Learn More
Cotton is one of the most important oil-producing crops and the cottonseed meal provides important protein nutrients as animal feed. However, information on the genetic basis of cottonseed oil and protein contents is lacking. A backcross inbred line (BIL) population from a cross between Gossypium hirsutum as the recurrent parent and G. barbadense was used(More)
Progressive spinal muscular atrophy (SMA), the most prevalent hereditary lower motor neuron disease, is caused by mutations in the telomeric copy of the survival of motor neuron (SMN1) gene. Unlike other cells, lower motor neurons cannot tolerate low levels of smn protein. However, it is unclear as to the nature of the cell death involved. There is evidence(More)
The most widely grown tetraploid Gossypium hirsutum and G. barbadense differ greatly in yield potential and fiber quality and numerous quantitative trait loci (QTLs) have been reported. However, correspondence of QTLs between experiments and populations is poor due to limited number of markers, small population size and inaccurate phenotyping. The purpose(More)
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology--cytoplasmic inclusions rich in transactive response element DNA-binding protein of 43 kDa (TDP43). Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation.(More)
OBJECTIVE To evaluate current club drug use and its potential association with the transmission of HIV/STD among Changsha men who have sex with men (MSM). METHOD A cross-sectional survey was conducted by using self-administered questionnaires including information regarding socio-demographics, club drug use, high-risk behaviors, and HIV/STD infections.(More)
Over 30% of patients with amyotrophic lateral sclerosis (ALS) exhibit cognitive deficits indicative of frontotemporal dementia (FTD), suggesting a common pathogenesis for both diseases. Consistent with this hypothesis, neuronal and glial inclusions rich in TDP43, an essential RNA-binding protein, are found in the majority of those with ALS and FTD, and(More)
The cotton (Gossypium spp.) fiber cell is an important unicellular model for studying cell differentiation. There is evidence suggesting that phosphorylation is a critical post-translational modification involved in regulation of a wide range of cell activities. Nevertheless, the sites of phosphorylation in G. hirsutum and their regulatory roles in fiber(More)
Spinal muscular atrophy, the most prevalent hereditary motor neuron disease, is caused by mutations in the survival motor neuron (SMN) 1 gene. A significant reduction in the encoded SMN protein leads to the degeneration of motor neurons. However, the molecular events leading to this process are not well understood. The present study uses a previously(More)
As the longest known single-celled trichomes, cotton (Gossypium L.) fibers constitute a classic model system to investigate cell initiation and elongation. In this study, we used a high-throughput transcriptome sequencing technology to identify fiber-initiation-related single nucleotide polymorphism (SNP) markers and differentially expressed genes (DEGs)(More)