Learn More
MOTIVATION Many applications of microarray technology in clinical cancer studies aim at detecting molecular features for refined diagnosis. In this paper, we follow an opposite rationale: we try to identify common molecular features shared by phenotypically distinct types of cancer using a meta-analysis of several microarray studies. We present a novel(More)
UNLABELLED OrderedList is a Bioconductor compliant package for meta-analysis based on ordered gene lists like those resulting from differential gene expression analysis. Our package quantifies the similarity between gene lists. The significance of the similarity score is estimated from random scores computed on perturbed data. OrderedList illustrates list(More)
UNLABELLED GO-Module is a web-accessible synthesis and visualization tool developed for end-user biologists to greatly simplify the interpretation of prioritized Gene Ontology (GO) terms. GO-Module radically reduces the complexity of raw GO results into compact biomodules in two distinct ways, by (i) constructing biomodules from significant GO terms based(More)
BACKGROUND Kinase inhibition is an increasingly popular strategy for pharmacotherapy of human diseases. Although many of these agents have been described as "targeted therapy", they will typically inhibit multiple kinases with varying potency. Pre-clinical model testing has not predicted the numerous significant toxicities identified during clinical(More)
Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide(More)
BACKGROUND While genome-wide association studies (GWAS) of complex traits have revealed thousands of reproducible genetic associations to date, these loci collectively confer very little of the heritability of their respective diseases and, in general, have contributed little to our understanding the underlying disease biology. Physical protein interactions(More)
Breast cancer remains the leading cause of cancer-related mortality in women. Comprehensive genomics, proteomics, and metabolomics studies are emerging that offer an opportunity to model disease biology, prognosis, and response to specific therapies. Although many biomarkers have been identified through advances in data mining techniques, few have been(More)
Identification and characterization of crucial gene target(s) that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2), a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular(More)
We aim to provide clinically applicable, reproducible, mechanistic interpretations of gene expression changes that lack in gene overlap among predictive gene-signatures. Using a method we recently developed, Functional Analysis of Individual Microarray Expression (FAIME), we provide evidence that Gene Ontology-anchored signatures (GO-signatures) show(More)