Learn More
BACKGROUND AND PURPOSE Bilirubin encephalopathy as a result of hyperbilirubinemia is a devastating neurological disorder that occurs mostly in the neonatal period. To date, no effective drug treatment is available. Glutamate-mediated excitotoxicity is likely an important factor causing bilirubin encephalopathy. Thus, drugs suppressing the overrelease of(More)
Hyperbilirubinemia is a common clinical phenomenon observed in human newborns. A high level of bilirubin can result in severe jaundice and bilirubin encephalopathy. However, the cellular mechanisms underlying bilirubin excitotoxicity are unclear. Our previous studies showed the action of gamma-aminobutyric acid (GABA)/glycine switches from excitatory to(More)
No effective medication for hyperbilirubinemia yet exists. Taurine is believed to exert a neuroprotective action. The aim of the present study was to determine whether taurine protected neurons of the rat anteroventral cochlear nucleus (AVCN) against bilirubin-induced neuronal hyperexcitation. AVCN neurons were isolated from 13 to 15-day-old Sprague-Dawley(More)
Neonatal brain is particularly vulnerable to pathological levels of bilirubin which elevates and overloads intracellular Ca2+, leading to neurotoxicity. However, how voltage-gated calcium channels (VGCCs) are functionally involved in excess calcium influx remains unknown. By performing voltage-clamp recordings from bushy cells in the ventral cochlear(More)
Nicotinamide adenine dinucleotide (NAD+) is an important molecule with extensive biological functions in various cellular processes, including protection against cell injuries. However, little is known regarding the roles of NAD+ in neuronal excitation and excitotoxicity associated with many neurodegenerative disorders and diseases. Using patch-clamp(More)
  • 1