Learn More
The bidirectional texture function (BTF) is a 6D function that can describe textures arising from both spatially-variant surface reflectance and surface mesostructures. In this paper, we present an algorithm for synthesizing the BTF on an arbitrary surface from a sample BTF. A main challenge in surface BTF synthesis is the requirement of a consistent(More)
For high-dimensional classification, it is well known that naively performing the Fisher discriminant rule leads to poor results due to diverging spectra and noise accumulation. Therefore, researchers proposed independence rules to circumvent the diverging spectra, and sparse independence rules to mitigate the issue of noise accumulation. However, in(More)
This paper studies the problem of plenoptic sampling in image-based rendering (IBR). From a spectral analysis of light field signals and using the sampling theorem, we mathematically derive the analytical functions to determine the minimum sampling rate for light field rendering. The spectral support of a light field signal is bounded by the minimum and(More)
We present a visual simulation technique called <i>appearance manifolds</i> for modeling the time-variant surface appearance of a material from data captured at a single instant in time. In modeling time-variant appearance, our method takes advantage of the key observation that concurrent variations in appearance over a surface represent different degrees(More)
In this paper, we introduce a real-time algorithm to render the rich visual effects of general non-height-field geometric details, known as mesostructure. Our method is based on a five-dimensional generalized displacement map (GDM) that represents the distance of solid mesostructure along any ray cast from any point within a volumetric sample. With this GDM(More)
Existing solid texture synthesis algorithms generate a full volume of color content from a set of 2D example images. We introduce a new algorithm with the unique ability to restrict synthesis to a subset of the voxels, while enforcing spatial determinism. This is especially useful when texturing objects, since only a thick layer around the surface needs to(More)
Many real world surfaces exhibit translucent appearance due to subsurface scattering. Although various methods exists to measure, edit and render subsurface scattering effects, no solution exists for manufacturing physical objects with desired translucent appearance. In this paper, we present a complete solution for fabricating a material volume with a(More)
Significant visual effects arise from surface mesostructure, such as fine-scale shadowing, occlusion and silhouettes. To efficiently render its detailed appearance, we introduce a technique called view-dependent displacement mapping (VDM) that models surface displacements along the viewing direction. Unlike traditional displacement mapping, VDM allows for(More)
Understanding how topics evolve in text data is an important and challenging task. Although much work has been devoted to topic analysis, the study of topic evolution has largely been limited to individual topics. In this paper, we introduce TextFlow, a seamless integration of visualization and topic mining techniques, for analyzing various evolution(More)
In this article, we propose techniques for modeling and rendering of heterogeneous translucent materials that enable acquisition from measured samples, interactive editing of material attributes, and real-time rendering. The materials are assumed to be optically dense such that multiple scattering can be approximated by a diffusion process described by the(More)