Learn More
Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329(More)
Since the discovery of insulin nearly 70 years ago, there has been no problem more fundamental to diabetes research than understanding how insulin works at the cellular level. Insulin binds to the alpha subunit of the insulin receptor which activates the tyrosine kinase in the beta subunit, but the molecular events linking the receptor kinase to(More)
The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus,(More)
Drought, salinity and cold are the major environmental factors impacting on survival and productivity of Tibetan hulless barley in Tibetan Plateau of China. Tibetan hulless barley cultivar, Tibetan Heiqingke No. 1, has developed a strong tolerance and adaptation to stresses in relation to the wild barley. The differences of dehydrin gene transcription and(More)
The molecular basis for the beta-cell dysfunction that characterizes non-insulin-dependent diabetes mellitus (NIDDM) is unknown. The Zucker diabetic fatty (ZDF) male rat is a rodent model of NIDDM with a predictable progression from the prediabetic to the diabetic state. We are using this model to study beta-cell function during the development of diabetes(More)
Angiotensin II (AII), acting via its G-protein linked receptor, is an important regulator of cardiac, vascular, and renal function. Following injection of AII into rats, we find that there is also a rapid tyrosine phosphorylation of the major insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) in the heart. This phenomenon appears to involve JAK2 tyrosine(More)
Insulin receptor substrate-1 is a major substrate of insulin receptor Tyr kinase. We have now cloned the IRS-1 cDNA from human skeletal muscle, one of the most important target tissues of insulin action, localized and cloned the human IRS-1 gene, and studied the expression of the protein in Chinese hamster ovary cells. Human IRS-1 cDNA encodes a 1242 amino(More)
IRS-1 is a major insulin receptor substrate which may play an important role in insulin signal transmission. The mRNA for IRS-1 in rat cells and tissues is about 9.5 kilobases (kb). Rat liver IRS-1 was stably expressed in Chinese hamster ovary (CHO) cells (CHO/IRS-1). Although its calculated molecular mass is 131 kDa, IRS-1 from quiescent cells migrated(More)
Interferon-alpha (IFN alpha) induces rapid tyrosine phosphorylation of the insulin receptor substrate-1 (IRS-1), a docking protein with multiple tyrosine phosphorylation sites that bind to the Src homology 2 (SH2) domains of various signaling proteins. During IFN alpha stimulation, the p85 regulatory subunit of the phosphatidylinositol 3'-kinase binds via(More)
The antifungal activity of sodium silicate on Fusarium sulphureum and its inhibitory effect on dry rot of potato tubers were investigated. Sodium silicate strongly inhibited spore germination and mycelial growth. Morphological changes in sodium silicate-treated hyphae such as mycelium sparsity and asymmetry, hyphal swelling, curling, and cupped shape were(More)