Learn More
Brain water proton (1H2O) longitudinal relaxation time constants (T1) were obtained from three healthy individuals at magnetic field strengths (B0) of 0.2 Tesla (T), 1.0T, 1.5T, 4.0T, and 7.0T. A 5-mm midventricular axial slice was sampled using a modified Look-Locker technique with 1.5 mm in-plane resolution, and 32 time points post-adiabatic inversion.(More)
Powerful data centers are the essential supporting infrastructure for mobile, ubiquitous, and cognitive computing, which are the most popular computing paradigms to utilize all kinds of physical resources and provide various services. To ensure the high quality of services, the performance and cost of a data center is a critical factor. In this paper, we(More)
The standard pharmacokinetic model applied to contrast reagent (CR) bolus-tracking (B-T) MRI (dynamic-contrast-enhanced) data makes the intrinsic assumption that equilibrium transcytolemmal water molecule exchange is effectively infinitely fast. Theory and simulation have suggested that this assumption can lead to significant errors. Recent analyses of(More)
[1] An extended Tracking Radar Echo by Correlation (TREC) technique, called T-TREC technique, has been developed recently to retrieve horizontal circulations within tropical cyclones (TCs) from single Doppler radar reflectivity (Z) and radial velocity (V r , when available) data. This study explores, for the first time, the assimilation of T-TREC-retrieved(More)
A fundamental reworking of pharmacokinetic theory for the use of contrast reagents (CRs) in T(1)-weighted MRI studies is presented. Unlike the standard model in common use, this derivation starts with the quantities measured, the intravascular, interstitial, and intracellular (1)H(2)O signals. The time dependences of CR concentrations are introduced as(More)
Contrast reagents (CRs) may enter the tissue interstitium for a period after a vascular bolus injection. As the amount of interstitial CR increases, the longitudinal relaxographic NMR "shutter-speed" (T(-1)) for the equilibrium transcytolemmal water exchange process increases. The quantity T(-1) is given by |r(1o)[CR(o)] + R(1o0) - R(1i)| (where r(1o) and(More)
The passage of a vascular-injected paramagnetic contrast reagent (CR) bolus through a region-of-interest affects tissue (1)H(2)O relaxation and thus MR image intensity. For longitudinal relaxation [R(1) identical with (T(1))(-1)], the CR must have transient molecular interactions with water. Because the CR and water molecules are never uniformly distributed(More)
The pharmacokinetic analysis of dynamic-contrast-enhanced (DCE) MRI data yields K(trans) and k(ep), two parameters independently measuring the capillary wall contrast reagent transfer rate. The almost universally used standard model (SM) embeds the implicit assumption that equilibrium transcytolemmal water exchange is effectively infinitely fast. In(More)