Learn More
The refractive index of human skin tissues is an important parameter in characterizing the optical response of the skin. We extended a previously developed method of coherent reflectance curve measurement to determine the in vitro values of the complex refractive indices of epidermal and dermal tissues from fresh human skin samples at eight wavelengths(More)
Reflectance imaging of biological tissues with visible and near-infrared light has the significant potential to provide a noninvasive and safe imaging modality for diagnosis of dysplastic and malignant lesions in the superficial tissue layers. The difficulty in the extraction of optical and structural parameters lies in the lack of efficient methods for(More)
We introduce an inverse method for determining simultaneously the real and imaginary refractive indices of microspheres based on integrating sphere measurements of diffuse reflectance and transmittance, and Monte Carlo modelling in conjunction with the Mie theory. The results for polystyrene microspheres suspended in water are presented.
Metamorphic testing is an effective technique for testing systems that do not have test oracles, for which it is practically impossible to know the correct output of an arbitrary test input. In metamorphic testing, instead of checking the correctness of a test output, the satisfaction of metamorphic relation among test outputs is checked. If a violation of(More)
Numerical simulations of light scattering by a biconcave shaped human red blood cell (RBC) are carried out using the finite-difference time-domain (FDTD) method. A previously developed FDTD code for the study of light scattering by ice crystals is modified for the current purpose and it is validated against Mie theory using a spherically shaped RBC.(More)
Photon propagation in biological tissue can be equivalently modeled with Monte Carlo simulations numerically or by the Radiative Transfer Equation (RTE) analytically. However, testing of a Monte Carlo program modeling photon propagation in biological tissue is difficult due to the unknown character of the test oracles. Although approaches based on(More)
A parallel Finite-Difference-Time-Domain (FDTD) code has been developed to numerically model the elastic light scattering by biological cells. Extensive validation and evaluation on various computing clusters demonstrated the high performance of the parallel code and its significant potential of reducing the computational cost of the FDTD method with low(More)
Small interfering RNA (siRNA) induced posttranscriptional gene silencing (PTGS) has been an efficient method for genetic and molecular analysis of certain developmental and physiological processes and represented a potential strategy for both controlling virus replication and developing therapeutic products. However, there are limitations for the methods(More)
In this work, we derived three-dimensional simplified spherical harmonics approximated higher order diffusion equations. We also solved the higher order diffusion equations using a finite element method and compared the solutions from the first-order diffusion equation and Monte Carlo simulations. We found that the conducted model is able to improve the(More)
Human B-cells play an important role in the immune system, and because of their relatively simple structures with a nearly spherically shaped cell membrane and a large nucleus, they provide a good case to study on how the details of cell structure affect light scattering properties. A finite-difference-time-domain (FDTD) method is used to calculate(More)