Learn More
We propose an online tracking algorithm in which the object tracking is achieved by using subspace learning and non-negative matrix factorization (NMF) under the partile filtering framework. The object appearance is modeled by a non-negative combination of non-negative components learned from examples observed in previous frames. In order to robust tracking(More)
In this paper, we cast tracking as a novel multi-task learning problem and exploit various types of visual features. We use an on-line feature selection mechanism based on the two-class variance ratio measure, applied to log likelihood distributions computed with respect to a given feature from samples of object and background pixels. The proposed method is(More)
  • 1