Learn More
Angiogenesis is a key component of bone formation. Delivery of growth factors for both angiogenesis and osteogenesis is about to gain important potential as a future therapeutic tool. This review focuses on these growth factors that have dual functions in angiogenesis and osteogenesis, and their localized application. A major hurdle in the clinical(More)
Angiogenesis, a complex biologic process, is regulated by a large number of angiogenic factors, including vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). Whether Bone morphogenetic proteins-2 (BMP-2), the osteoinductive factor, could significantly reinforce the effect of VEGF and FGF-2 on angiogenesis has not been studied(More)
  • Yunqing Kang, Jiang Wu, +6 authors Li Liao
  • European journal of pharmaceutics and…
  • 2008
In this work, indomethacin-loaded poly(l-lactic acid)/poly(lactide-co-glycolide) (IDMC-PLLA/PLGA) microparticles were prepared using solution-enhanced dispersion by supercritical fluids (SEDS) technique in an effort to obtain alternative IDMC formulation for drug delivery system. Surface morphology, particle size and particle size distribution, drug(More)
In the present study, the effects of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) on regulation of rat osteoblast (ROB) maturation in vitro were investigated. It was found that the proliferation, differentiation and mineralization of ROBs were all dose-dependently increased at(More)
In this work, poly(L-lactic acid)/poly(lactide-co-glycolide) (PLLA/PLGA) microparticles were prepared using the technique of solution-enhanced dispersion by supercritical fluids (SEDS). For comparison, separate PLLA and PLGA microparticles were also produced by the same SEDS process. The produced microparticles were characterized by scanning electron(More)
Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this(More)
The effects in vitro of a novel multiphase glass-ceramic (with nominal composition of 43.19% CaO, 7.68% MgO, and 49.13% SiO2 in weight percent) on cell adhesion, proliferation, differentiation and ultrastructure of human osteosarcoma cell line MG63, mouse fibroblasts L929, and human lung adenocarcinoma epithelial cell line A549 were investigated in this(More)
Calcium-deficient hydroxyapatite (cd-HA) crystals with a rod-like shape, 10-30 nm in diameter and 60150 nm in length, were prepared via a hydrothermal method in the presence of poly(acrylic acid) (PAA) (in situ HA). Scaffolds composed of chitosan (CS), polycaprolactone (PCL) and in situ HA were prepared by freeze-drying, using a formic acid/acetone mixture(More)
Organ-specific metastasis is of great importance since most of the cancer deaths are caused by spread of the primary cancer to distant sites. Therefore, targeted anti-metastases therapies are needed to prevent cancer cells from metastasizing to different organs. The phage clone pc3-1 displaying peptide WSGPGVWGASVK selected by phage display had been(More)
In the present study, the dissolution behavior of the CaO-MgO-SiO2 -based multiphase bioceramic powders as well as the effects of released ions on osteogenesis was investigated. In the dissolution process, Ca, Mg, and Si ions could be dissolved out from the powders. The incorporation of Mg could slow down the degradation rate of the powders so that to(More)