Ximei Li

Zhongxu Lin9
Xianlong Zhang6
Wenhui Gao2
9Zhongxu Lin
6Xianlong Zhang
2Wenhui Gao
Learn More
A total of 588 Gossypium barbadense coding sequences (CDSs) from nucleotide databases were selected for marker development. After selection, 125 CDSs were used to design 126 markers, including 39 intron polymorphisms (GbIPs) and 87 insertion–deletion polymorphisms (GbIDPs). These markers were evaluated by analyzing the genetic diversity of 66 tetraploid(More)
Cotton fiber is an ideal model to study cell elongation and cell wall construction in plants. During fiber development, some genes and proteins have been reported to be specifically or preferentially expressed. Mapping of them will reveal the genomic distribution of these genes, and will facilitate selection in cotton breeding. Based on previous reports, we(More)
EST–SSRs of Gossypium barbadense are mainly developed using traditional Sanger sequencing. However, due to the high cost and low throughput of Sanger sequencing, it is necessary to use high throughput sequencing technology for the development of more ESTs to more effectively analyze the structure and function of this species. In this study, a G. barbadense(More)
A population of 178 recombinant inbred lines (RILs) was developed using a single seed descendant from a cross between G. hirsutum. acc DH962 and G. hirsutum. cv Jimian5, was used to construct a genetic map and to map QTL for fiber and yield traits. A total of 644 polymorphic loci were used to construct a final genetic map, containing 616 loci and spanning(More)
Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant breeding, which is particularly important in the case of less researched crops such as cotton. Considering the obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), expressed sequence tags (ESTs) were(More)
A high-density linkage map was constructed using 1,885 newly obtained loci and 3,747 previously published loci, which included 5,152 loci with 4696.03 cM in total length and 0.91 cM in mean distance. Homology analysis in the cotton genome further confirmed the 13 expected homologous chromosome pairs and revealed an obvious inversion on Chr10 or Chr20 and(More)
Transcription factors (TFs) play an important role in the regulation of plant growth and development. The study of the structure and function of TFs represents a research frontier in plant molecular biology. The findings of these studies will provide significant information regarding genetic improvement traits in crops. Currently, a large number of TFs have(More)
Cotton is the dominant textile crop and also serves as an important oil crop. An estimated 15% economic loss associated with cotton production in China has been caused by diseases, and no resistance genes have been cloned in this crop. Molecular markers developed from resistance gene homologues (RGHs) might be tightly linked with target genes and could be(More)
  • 1