Learn More
Rats that exhibit a behaviorally inhibited temperament acquire active-avoidance behaviors quicker, and extinguish them slower, than normal outbred rats. Here we explored the contribution of stimuli that signal periods of non-threat (i.e. safety signals) in the process of acquiring active-avoidance behavior. Utilizing a discrete lever-press escape-avoidance(More)
Given that avoidance is a core feature of anxiety disorders, Wistar-Kyoto (WKY) rats may be a good model of anxiety vulnerability for their hypersensitivity to stress and trait behavioral inhibition. Here, we examined the influence of strain and shock intensity on avoidance acquisition and extinction. Accordingly, we trained WKY and Sprague-Dawley (SD) rats(More)
The risk for developing anxiety disorders is greater in females and those individuals exhibiting a behaviorally inhibited temperament. Growth of behavioral avoidance in people is a significant predictor of symptom severity in anxiety disorders, including post-traumatic stress disorder. Using an animal model, our lab is examining how the process of learning(More)
Wistar-Kyoto (WKY) rats exhibit behavioral inhibition and model anxiety vulnerability. Although WKY rats exhibit faster active avoidance acquisition, simple associative learning or the influence of proactive interference (PI) has not been adequately assessed in this strain. Therefore, we assessed eyeblink conditioning and PI in WKY and outbred(More)
The medial septum and diagonal band (MSDB) are important in spatial learning and memory. On the basis of the excitotoxic damage of GABAergic MSDB neurons, we have recently suggested a role for these neurons in controlling proactive interference. Our study sought to test this hypothesis in different behavioral procedures using a new GABAergic immunotoxin.(More)
Wistar-Kyoto (WKY) rats, an animal model of anxiety vulnerability, acquire lever-press avoidance faster than outbred Sprague-Dawley (SD) rats. Faster avoidance acquisition may reflect an inherent ability to acquire cue-outcome associations, response-outcome associations or both. To evaluate cue-outcome learning, acquisition of classically conditioned(More)
Avoidance susceptibility may constitute a vulnerability to develop anxiety disorders, and Wistar-Kyoto (WKY) rats exhibit unique features in their acquisition of avoidance behavior that appear to promote susceptibility to this form of learning, namely the absence of the commonly observed "warm-up" effect. The present study sought to determine if strain(More)
The hippocampus has been implicated in anxiety disorders and post-traumatic stress disorder (PTSD); human studies suggest that a dysfunctional hippocampus may be a vulnerability factor for the development of PTSD. In the current study, we examined the effect of hippocampal damage in avoidance learning, as avoidance is a core symptom of all anxiety(More)
Altered medial prefrontal cortex (mPFC) and amygdala function is associated with anxiety-related disorders. While the mPFC-amygdala pathway has a clear role in fear conditioning, these structures are also involved in active avoidance. Given that avoidance perseveration represents a core symptom of anxiety disorders, the neural substrate of avoidance,(More)
Avoidance is a core feature of anxiety disorders and factors which increase avoidance expression or its resistance represent a source of vulnerability for anxiety disorders. Outbred female Sprague Dawley (SD) rats and inbred male and female Wistar-Kyoto (WKY) rats expressing behaviorally inhibited (BI) temperament learn avoidance faster than male SD rats.(More)