Xihua Chen

Learn More
While central administration of arginine vasopressin (VP) to the non-febrile rat at high doses can cause hypothermia, there is little evidence for a role for endogenous VP in normal thermoregulation. In contrast, VP arising from cell bodies in the bed nucleus of the stria terminalis and innervating the ventral septal areas and possibly the amygdala appears(More)
Enhanced activity of the dopaminergic system originating in the ventral tegmental area is implicated in addictive and psychiatric disorders. Burst firing increases dopamine levels at the synapse to signal novelty and salience. We have previously reported a calcium-dependent burst firing of dopamine cells mediated by L-type channels following cholinergic(More)
Enhanced activity of the central dopamine system has been implicated in many psychiatric disorders including schizophrenia and addiction. Besides terminal mechanisms that boost dopamine levels at the synapse, the cell body of dopamine cells enhances terminal dopamine concentration through encoding action potentials in bursts. This paper presents evidence(More)
We have previously reported that dopamine (DA) depresses non-NMDA receptor-mediated glutamatergic transmission in the rat parabrachial nucleus (PBN), an interface between brainstem and forebrain that is implicated in autonomic regulation. This work examined cellular signalling pathways that might underlie this DA-induced synaptic depression. Direct(More)
Dopaminergic projections from the ventral tegmental area (VTA) constitute the mesolimbocortical system that underlies addiction and psychosis primarily as a result of increased dopaminergic transmission. Dopamine release is spike dependent. L-type calcium channels (LTCCs) play an important role in regulating firing activities, but the contribution of(More)
We examined actions of arginine vasopressin (AVP) and amastatin (an inhibitor of the aminopeptidase that cleaves AVP) on synaptic currents in slices of rat parabrachial nucleus using the nystatin-perforated patch recording technique. AVP reversibly decreased the amplitude of the evoked, glutamate-mediated, excitatory postsynaptic current (EPSC) with an(More)
Nystatin-perforated patch recordings were made from rat parabrachial neurons in an in vitro slice preparation to examine the effect of dopamine on parabrachial cells and on excitatory synaptic transmission in this nucleus. In current clamp mode, dopamine reduced the amplitude of the evoked excitatory postsynaptic potential without significant change in(More)
Chinese sturgeon (Acipenser sinensis) is a rare and endangered species, and also an important resource for the sturgeon aquaculture industry. To understand molecular characterization of Chinese sturgeon gonadotropins (GTHs), we cloned the full-length cDNAs of gonadotropin subunits common alpha (GTH-alpha), follicle-stimulating hormone (FSH) and luteinizing(More)
The vasopressinergic innervation of the ventral septal area (VSA) has been shown to be implicated in antipyresis. Because this system is less well developed in female rats, we hypothesized that female rats would display exaggerated febrile responses. We therefore examined the temperature responses of conscious and urethan-anesthetized rats of both sexes to(More)
Dopaminergic projections from the ventral tegmental area (VTA) constitute the mesolimbocortical system that underlies addiction and psychosis primarily as the result of increased dopaminergic transmission. Dopaminergic neurons in the VTA receive glutamatergic and cholinergic innervations that regulate their firing activities. Both transmitter systems can(More)