Xihan Mu

Learn More
—This paper aimed at the case of nonisothermal pixels and proposed a daytime temperature-independent spectral indices (TISI) method to retrieve directional emissivity and effective temperature from daytime multiangular observed images in both middle and thermal infrared (MIR and TIR) channels by combining the kernel-driven bidirectional reflectance(More)
Validation over heterogeneous areas is critical to ensuring the quality of remote sensing products. This paper focuses on the sampling methods used to validate the coarse-resolution fractional vegetation cover (FVC) product in the Heihe River Basin, where the patterns of spatial variations in and between land cover types vary significantly in the different(More)
Mountainous areas with rugged terrains are widely distributed around the world. Remotely sensed values of the fraction of absorbed photosynthetically active radiation (FAPAR) suffer from the effect of rugged terrain. In this study, the effect of rugged terrain was incorporated into the FAPAR model based on recollision probability (FAPAR-P), which was(More)
The development of near-surface remote sensing requires the accurate extraction of leaf area index (LAI) from networked digital cameras under all illumination conditions. The widely used directional gap fraction model is more suitable for overcast conditions due to the difficulty to discriminate the shaded foliage from the shadowed parts of images acquired(More)
The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry Experiment (COMPLICATE) comprises a network of remote sensing experiments designed to enhance the dynamic analysis and modeling of remotely sensed information for complex land surfaces. Two types of experimental campaigns were established under the framework(More)