• Citations Per Year
Learn More
We perform a fully differential measurement on strong-field double ionization of Xe by 25 fs, 790 nm laser pulses in intensity region (0.4-3)×10(14) W/cm2. We observe that the two-dimensional correlation momentum spectra along the laser polarization direction show a nonstructured distribution for double ionization of Xe when decreasing the laser intensity(More)
We experimentally reconstructed the structure of the N2Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N2 center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between(More)
The paper gives a new value model based on rough set and fuzzy theory to value the companies' customer relationship management. Because the number of customer relationship management' indices is too many and the calculation is very complex, this paper uses rough set to play down the complication. Because of the subjective effect of value people, the fuzzy(More)
Dissociative ionization dynamics were studied experimentally for CO2 driven by intense laser pulses. Three-dimensional momentum vectors of correlated atomic ions were obtained for each three-body fragmentation event using triple ion coincidence measurement. Newton diagram demonstrated that three-body fragmentation of CO2 (n+) (n = 3-6) can occur through(More)
We experimentally and theoretically studied dissociative ionization of argon dimer driven by intense femtosecond laser pulses. In the experiment, we measured the ion yield and the angular distribution of fragmental ions generated from the dissociative ionization channels of (1,1) (Ar22+ → Ar+ + Ar+) and (2,1) (Ar23+ → Ar2+ + Ar+) using a cold target recoil(More)
Photoelectrons ionized from atoms and molecules in a strong laser field are either emitted directly or rescattered by the nucleus, both of which can serve as efficiently useful tools for molecular orbital imaging. We measure the photoelectron angular distributions of molecules (N2, O2 and CO2) ionized by infrared laser pulses (1320 nm, 0.2 ~ 1 × 10(14)(More)
  • 1