Learn More
The Drosophila tinman homeobox gene has a major role in early mesoderm patterning and determines the formation of visceral mesoderm, heart progenitors, specific somatic muscle precursors and glia-like mesodermal cells. These functions of tinman are reflected in its dynamic pattern of expression, which is characterized by initial widespread expression in the(More)
The transcriptome provides the database from which a cell assembles its collection of proteins. Translation of individual mRNA species into their encoded proteins is regulated, producing discrepancies between mRNA and protein levels. Using a new modeling approach to data analysis, a striking diversity is revealed in association of the transcriptome with the(More)
Time-course studies with microarray technologies provide enormous potential for exploring underlying mechanisms of biological phenomena in many areas of biomedical research, but the large amount of gene expression data generated by such studies also presents great challenges to data analysis. Here we introduce a regression-based statistical modeling(More)
Recently, the human SRBC (hSRBC) gene, a candidate tumor suppressor gene (TSG), has been mapped to the chromosomal region 11p 15.5--p15.4 where frequent allele loss has been described in lung cancer. Aberrant methylation (referred to as methylation) of the promoter region of TSGs has been identified as an important mechanism for gene silencing. Loss of(More)
Complete genome sequences together with high throughput technologies have made comprehensive characterizations of gene expression patterns possible. While genome-wide measurement of mRNA levels was one of the first applications of these advances, other important aspects of gene expression are also amenable to a genomic approach, for example, the translation(More)
WtSV40 and its variant EL-SV40 (contains two complementing defective genomes) fail to productively infect human embryonic kidney cells or human fibroblasts. However, early SV40 (E-SV40) genomes can propagate in human cells when complemented by a particular late RF virus (L-RFV) genome or the closely related wtBKV genome. The L-RFV genome (L-RFV clone H)(More)
In this paper, we investigate compressed sensing principles to devise an in-situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from(More)
of dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy TIME ENCODED COMPRESSION AND CLASSIFICATION USING THE INTEGRATE AND FIRE SAMPLER By Alexander Singh Alvarado May 2012 Chair: José C. Prı́ncipe Major: Electrical and Computer Engineering This(More)
We examine different sampling lattices and their respective bandlimited spaces for reconstruction of irregularly sampled multidimensional images. Considering an irregularly sampled dataset, we demonstrate that the non-tensor-product bandlimited approximations corresponding to the body-centered cubic and face-centered cubic lattices provide a more accurate(More)
We present a variational framework for the reconstruction of irregularly-sampled volumetric data in, nontensor-product, spline spaces. Motivated by the sampling-theoretic advantages of body centered cubic (BCC) lattice, this paper examines the BCC lattice and its associated box spline spaces in a variational setting. We introduce a regularization scheme for(More)