Learn More
NF-kappaB is a pleiotropic transcription factor involved in multiple processes, including inflammation and oncogenesis. We have previously reported that COMMD1 represses kappaB-dependent transcription by negatively regulating NF-kappaB-chromatin interactions. Recently, ubiquitination of NF-kappaB subunits has been similarly implicated in the control of(More)
The 26S proteasome is a complex protease consisting of at least 32 different subunits. Early studies showed that Rpn4 (also named Son1 and Ufd5) is a transcriptional activator of the Saccharomyces cerevisiae proteasome genes, and that Rpn4 is rapidly degraded by the 26S proteasome. These observations suggested that in vivo proteasome abundance may be(More)
The homeostatic abundance of the proteasome in Saccharomyces cerevisiae is controlled by a feedback circuit in which transcriptional activator Rpn4 up-regulates the proteasome genes and is destroyed by the assembled, active proteasome. Remarkably, the degradation of Rpn4 can be mediated by two independent pathways. One pathway is independent of ubiquitin,(More)
NF-κB is the master regulator of the immune response and is responsible for the transcription of hundreds of genes controlling inflammation and immunity. Activation of NF-κB occurs in the cytoplasm through the kinase activity of the IκB kinase complex, which leads to translocation of NF-κB to the nucleus. Once in the nucleus, NF-κB transcriptional activity(More)
NF-κB is a master regulator of inflammation and has been implicated in the pathogenesis of immune disorders and cancer. Its regulation involves a variety of steps, including the controlled degradation of inhibitory IκB proteins. In addition, the inactivation of DNA-bound NF-κB is essential for its regulation. This step requires a factor known as copper(More)
COMMD {COMM [copper metabolism Murr1 (mouse U2af1-rs1 region 1)] domain-containing} proteins participate in several cellular processes, ranging from NF-kappaB (nuclear factor kappaB) regulation, copper homoeostasis, sodium transport and adaptation to hypoxia. The best-studied member of this family is COMMD1, but relatively little is known about its(More)
Cullin RING ligases (CRLs), the most prolific class of ubiquitin ligase enzymes, are multimeric complexes that regulate a wide range of cellular processes. CRL activity is regulated by CAND1 (Cullin-associated Nedd8-dissociated protein 1), an inhibitor that promotes the dissociation of substrate receptor components from the CRL. We demonstrate here that(More)
The gene encoding COMM domain-containing 1 (COMMD1) is a prototypical member of the COMMD gene family that has been shown to inhibit both NF-kappaB- and HIF-mediated gene expression. NF-kappaB and HIF are transcription factors that have been shown to play a role in promoting tumor growth, survival, and invasion. In this study, we demonstrate that COMMD1(More)
The transcription factor NF-kappaB is a critical regulator of inflammatory and cell survival signals. Proteasomal degradation of NF-kappaB subunits plays an important role in the termination of NF-kappaB activity, and at least one of the identified ubiquitin ligases is a multimeric complex containing Copper Metabolism Murr1 Domain 1 (COMMD1) and Cul2. We(More)
BACKGROUND & AIMS Activation of the transcription factor nuclear factor-κB (NF-κB) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-κB activation. We investigated the roles of COMMD1 in the pathogenesis of(More)