Xiaozhou Jiang

Learn More
Chlamydia infections cause substantial morbidity worldwide and effective prevention will depend on a vaccine. Since Chlamydia immunity is T cell-mediated, a major impediment to developing a molecular vaccine has been the difficulty in identifying relevant T cell Ags. In this study, we used a combination of affinity chromatography and tandem mass(More)
Mice that were intranasally vaccinated with live or dead Chlamydia muridarum with or without CpG-containing oligodeoxynucleotide 1862 elicited widely disparate levels of protective immunity to genital tract challenge. We found that the frequency of multifunctional T cells coexpressing IFN-γ and TNF-α with or without IL-2 induced by live C. muridarum most(More)
Dendritic cells (DCs) appear to orchestrate much of the immunobiology of Chlamydia infection, but most studies of Chlamydia-DC interaction have been limited by the availability and heterogeneity of primary bone marrow-derived DCs (BMDCs). We therefore evaluated the immunobiology of Chlamydia muridarum infection in an immortal DC line termed JAWS II derived(More)
Major impediments to developing a Chlamydia vaccine lie in identifying immunologically relevant T-cell antigens and delivery in a manner to stimulate protective immunity. Using an immunoproteomic approach, we previously identified three immunodominant Chlamydia T-cell antigens (PmpG-1, PmpE/F-2, and RplF). Because RplF has high homology to a human ortholog,(More)
We have recently shown that down-regulation of mouse Thy28 (mThy28) protein expression appears to be accompanied by apoptotic processes. Thymocytes from mice contain moderate amounts of mThy28 protein and undergo proliferation, differentiation, or apoptosis during murine thymic maturation. As a first step to examine the potential role of the mThy28 protein(More)
Using a combination of affinity chromatography and tandem mass spectrometry, we recently identified 8 MHC class II (I-A(b)) -bound Chlamydia peptides eluted from dendritic cells (DCs) infected with Chlamydia muridarum. In this study we cloned and purified the source proteins that contained each of these peptides and determined that three of the eight(More)
Major impediments to a Chlamydia vaccine lie in discovering T cell antigens and polarizing adjuvants that stimulate protective immunity. We previously reported the discovery of three T cell antigens (PmpG, PmpF, and RplF) via immunoproteomics that elicited protective immunity in the murine genital tract infection model against Chlamydia infection after(More)
Immune responses to Chlamydia trachomatis underlay both immunity and immunopathology. Immunopathology in turn has been attributed to chronic persistent infection with persistence being defined as the presence of organisms in the absence of replication. We hypothesized that dendritic cells (DCs) play a central role in Chlamydia immunity and immunopathology(More)
CD4 T cell immune responses such as interferon-γ and tumor necrosis factor-α secretion are necessary for Chlamydia immunity. We used an immunoproteomic approach in which Chlamydia trachomatis and Chlamydia muridarum-derived peptides presented by MHC class II molecules on the surface of infected dendritic cells (DCs) were identified by tandem mass(More)
We investigated the phenotypic basis for genetically determined differences in susceptibility and resistance to Chlamydia muridarum pulmonary infection using BALB/c and C57BL/6 mice. Following C. muridarum intranasal inoculation, the intensity of infection was very different between BALB/c and C57BL/6 beginning as early as 3 days post-infection.(More)