Xiaozhong Wang

Learn More
In response to environmental stress, cells induce a program of gene expression designed to remedy cellular damage or, alternatively, induce apoptosis. In this report, we explore the role of a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) in coordinating stress gene responses. We find that expression of activating(More)
The genomic architecture of protocadherin (Pcdh) gene clusters is remarkably similar to that of the immunoglobulin and T cell receptor gene clusters, and can potentially provide significant molecular diversity. Pcdh genes are abundantly expressed in the central nervous system. These molecules are primary candidates for establishing specific neuronal(More)
Transposon systems are widely used for generating mutations in various model organisms. PiggyBac (PB) has recently been shown to transpose efficiently in the mouse germ line and other mammalian cell lines. To facilitate PB's application in mammalian genetics, we characterized the properties of the PB transposon in mouse embryonic stem (ES) cells. We first(More)
Activating transcription factor 3 (ATF3) is a stress-inducible gene and encodes a member of the ATF/CREB family of transcription factors. However, the physiological significance of ATF3 induction by stress signals is not clear. In this report, we describe several lines of evidence supporting a role of ATF3 in stress-induced beta-cell apoptosis. First, ATF3(More)
The murine genome contains approximately 70 protocadherin (Pcdh) genes. Many are expressed in the nervous system, suggesting that Pcdhs may specify neuronal connectivity. Here, we analyze the 22 contiguous genes of the Pcdh-gamma cluster. Individual neurons express subsets of Pcdh-gamma genes. Pcdh-gamma proteins are present in most neurons and associated(More)
Fifty-eight cadherin-related protocadherin (Pcdh) genes are tandemly arrayed in three clusters (alpha, beta, and gamma) on mouse chromosome 18. The large number of clustered Pcdh family members, their presence at synapses, and the known binding specificities of other cadherin superfamily members all suggest that these Pcdhs play roles in specifying synaptic(More)
The three tandem-arrayed protocadherin (Pcdh) gene clusters, namely Pcdh-alpha, Pcdh-beta, and Pcdh-gamma, play important roles in the development of the vertebrate central nervous system. To gain insight into the molecular action of PCDHs, we performed a systematic proteomics analysis of PCDH-gamma-associated protein complexes. We identified a list of 154(More)
MicroRNA (miRNA) silencing fine-tunes protein output and regulates diverse biological processes. Argonaute (Ago) proteins are the core effectors of the miRNA pathway. In lower organisms, multiple Agos have evolved specialized functions for distinct RNA silencing pathways. However, the roles of mammalian Agos have not been well characterized. Here we show(More)
Genetic studies demonstrate that gamma-protocadherins (PCDH-gamma) are required for the survival and synaptic connectivity in neuronal subpopulations of the central nervous system. However, the intracellular signaling mechanisms for PCDH-gamma are poorly understood. Here, we show that PCDH-gamma binds two tyrosine kinases, PYK2 and focal adhesion kinase(More)
Although the role of developmental apoptosis in shaping the complement and connectivity of sensory and motoneurons is well documented, the extent to which cell death affects the 13 cardinal classes of spinal interneurons is unclear. Using a series of genetic manipulations in vivo, we demonstrate for the first time a differential pattern of developmental(More)