Learn More
Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with(More)
Cytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis(More)
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear(More)
Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight(More)
The sequence and the structure of DNA methyltransferase-2 (Dnmt2) bear close affinities to authentic DNA cytosine methyltransferases. A combined genetic and biochemical approach revealed that human DNMT2 did not methylate DNA but instead methylated a small RNA; mass spectrometry showed that this RNA is aspartic acid transfer RNA (tRNA(Asp)) and that DNMT2(More)
The publication of draft sequences for the two subspecies of Oryza sativa (rice), japonica (cv. Nipponbare) and indica (cv. 93-11), provides a unique opportunity to study the dynamics of transposable elements in this important crop plant. Here we report the use of these sequences in a computational approach to identify the first active DNA transposons from(More)
Post-translational modifications of histones play important roles in maintaining normal transcription patterns by directly or indirectly affecting the structural properties of the chromatin. In plants, methylation of histone H3 lysine 4 (H3K4me) is associated with genes and required for normal plant development. We have characterized the genome-wide(More)
Polycomb proteins are required for maintenance of silent chromatin states via histone H3 Lys27 trimethylation (H3K27me3) in animals, but homologs are not found in plant genomes. Using a DamID-chip method, we found that the Arabidopsis thaliana chromodomain-containing protein LHP1 colocalizes with H3K27me3 genome-wide. The LHP1 chromodomain also binds(More)
Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base(More)
Transposable elements (TEs) are the major component of plant genomes where they contribute significantly to the >1,000-fold genome size variation. To understand the dynamics of TE-mediated genome expansion, we have undertaken a comparative analysis of the TEs in two related organisms: the weed Arabidopsis thaliana (125 megabases) and Brassica oleracea ((More)