Learn More
Development of novel anodic materials that could facilitate microbial biofilm formation, substrate transfer, and electron transfer is vital to enhance the performance of microbial fuel cells (MFCs). In this work, nickel-coated sponge, as a novel and inexpensive material with an open three-dimensional macro-porous structure, was employed as an anode to(More)
Lipases are one of the most important biocatalysts for biotechnological applications. Immobilization is an efficient method to increase the stability and reusability of lipases. In this study, nanoporous gold (NPG), a new kind of nanoporous material with tunable porosity and excellent biocompatibility, was employed as an effective support for lipase(More)
For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is(More)
Promoting the electrocatalytic oxidation of glucose is crucial in glucose biosensor design. In this study, nanoporous gold (NPG) was selected for glucose oxidase (GOx) immobilization and glucose biosensor fabrication because of its open, highly conductive, biocompatible, and interconnected porous structure, which also facilitates the electrocatalytic(More)
Magnetic modification of microbial cells enables to prepare smart biocomposites in bioremediation. In this study, we constructed an efficient biocomposite by assembling Fe3O4 nanoparticles onto the surface of Sphingomonas sp. XLDN2-5 cells. The average particle size of Fe3O4 nanoparticles was about 20 nm with 45.5 emu g-1 saturation magnetization. The(More)
NaGdF4:12%Er3+@NaGdF4:x%Er3+ (x = 0, 6, 8, 10, and 12) active-core/active-shell nanoparticles (NPs) were peculiarly synthesized via a delayed nucleation pathway with procedures. The phase, shape, and size of the resulting core-shell NPs are confirmed by transmission electron microscopy and X-ray diffraction. Coated with a NaGdF4:10%Er3+ active shell around(More)
A new kind of dynamic dual-foveated imaging system in the infrared band is designed and optimized in this paper. Dual-foveated imaging refers to the variation in spatial resolution at the two selected fields across the image. Such variable resolution imaging system is suitable for a variety of applications including monitoring, recognition, and remote(More)
In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were(More)
  • 1