Xiaoyou Wang

Learn More
PURPOSE The purpose of this work was to demonstrate the advantages of a folate modified pH sensitive micelle system (HPPF) on reducing the systemic toxicity of antitumor drug doxorubicin (DOX) as well as increasing the antitumor efficacy on multi-drug resistant tumor. METHODS The micelle HPPF was fabricated by PHIS-PEG and Fol-PEG-PLA using dialysis(More)
UNLABELLED Though combination chemotherapy or antitumor nanomedicine is extensively investigated, their combining remains in infancy. Additionally, enhanced delivery of estrogen or its analogs to tumor with highly-expressed estrogen-receptor (ER) is seldom considered, despite its necessity for ER-positive breast cancer treatment. Here, nanomedicine based(More)
Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show(More)
This article reports an effective method to regulate hydrophobic drug release rate from partially silica-coated bicellar nanodisc generated from proamphiphilic organoalkoxysilane and dihexanoylphosphatidylcholine by introducing different molar percentages of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) into planar bilayers of(More)
Computer vision based technologies have seen widespread adoption over the recent years. This use is not limited to the rapid adoption of facial recognition technology but extends to facial expression recognition, scene recognition and more. These developments raise privacy concerns and call for novel solutions to ensure adequate user awareness, and ideally,(More)
To design a prodrug-based self-assembling nanosystem with both ligand targeting and stimuli-responsive features, and elucidate the superiority of each targeting strategy and the synergistic effect between them, we synthesized four small molecule amphiphilic peptide-drug conjugates (APDCs) using maytansinoid (DM1) as a cytotoxic agent, cRGDfK as a homing(More)
  • 1