Xiaoyong Lei

Learn More
Pretreatment with 43 nM (10 ng/mL) to 86 nM melatonin for 5 days significantly attenuated cold-induced apoptosis in carrot suspension cells (Daucus carota L.) as evidenced by the TUNEL procedure, DNA fragmentation and the morphological changes revealed by electronic microscopy observations. The antiapoptotic effect of melatonin was initially thought to be a(More)
Mouse macrophages undergo ER stress and apoptosis upon free cholesterol loading (FCL). We recently generated iPLA(2)beta-null mice, and here we demonstrate that iPLA(2)beta-null macrophages have reduced sensitivity to FCL-induced apoptosis, although they and wild-type (WT) cells exhibit similar increases in the transcriptional regulator CHOP.(More)
Eukaryotic translation initiation factor 4G (eIF4G) is a scaffold component of eukaryotic translation initiation factor 4F (eIF4F) complex, which takes principal part in the initiating of protein synthesis. Both two subtypes (eIF4G1 and eIF4G2) of eIF4G were found to be closely related with various tumors. The eIF4G1 expression is significantly up-regulated(More)
Endoplasmic reticulum (ER) stress induces INS-1 cell apoptosis by a pathway involving Ca(2+)-independent phospholipase A(2) (iPLA(2)beta)-mediated ceramide generation, but the mechanism by which iPLA(2)beta and ceramides contribute to apoptosis is not well understood. We report here that both caspase-12 and caspase-3 are activated in INS-1 cells following(More)
The development of acquired resistance to chemotherapy is a major obstacle in the successful treatment of cancer. In breast cancer cells, B-cell lymphoma-extra large (Bcl-xL) is involved in the development of resistance to various chemotherapeutic agents; therefore, preliminary biological prediction was performed to identify a putative binding site for(More)
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years,(More)
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are(More)
Phospholipases A(2) (PLA(2)) hydrolyze the sn-2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA(2) (iPLA(2)beta), which participates in a variety of signaling events; iPLA(2)beta mRNA is(More)
AIM To explore the mechanisms involved in ox-LDL transcytosis across endothelial cells and the role of caveolae in this process. METHODS An in vitro model was established to investigate the passage of oxidized low density lipoprotein (ox-LDL) through a tight monolayer of human umbilical vein endothelial cells (HUVEC) cultured on a collagen-coated filter.(More)
Recent studies have shown that a class of small, functional RNAs, named microRNAs, may regulate multidrug resistance-associated protein 1 (ABCC1). Since ABCC1 is an important efflux transporter responsible for cellular drug disposition, the discovery of microRNAs (miRNA) brings an idea that there may be some other unknown multidrug resistance (MDR)(More)