Learn More
Monocyte-derived myeloid cells play vital roles in inflammation-related autoimmune/inflammatory diseases and cancers. Here, we report that exosomes can deliver anti-inflammatory agents, such as curcumin, to activated myeloid cells in vivo. This technology provides a means for anti-inflammatory drugs, such as curcumin, to target the inflammatory cells as(More)
Until now the essential transcription factor that determines the epithelial phenotype of breast cancer has not been identified and its role in epithelial-to-mesenchymal transition (EMT) and tumor progression remain unclear. Here, by analyzing large expression profiles of human breast cancer cells, we found an extraordinary correlation between the expression(More)
In this study, exosomes used to encapsulate curcumin (Exo-cur) or a signal transducer and activator of transcription 3 (Stat3) inhibitor, i.e., JSI124 (Exo-JSI124) were delivered noninvasively to microglia cells via an intranasal route. The results generated from three inflammation-mediated disease models, i.e., a lipopolysaccharide (LPS)-induced brain(More)
Exosomal particular size of 30-100 nm matches the size criterion for nanoparticles, and opens up the possibility of using exosomes as a nanoparticle drug carrier. More importantly, exosomes released from different types of host cells have different biological effects and targeting specificities. Therefore, depending on the therapeutic goal, different types(More)
In this study we observed that mice pretreated with tumor exosomes had a significant acceleration of tumor metastasis in the lung. Tumor metastasis correlated significantly with an increase in recruitment of more Myeloid-derived suppressor cells (MDSCs) in the lung of C57BL/6j (B6) mice pretreated with tumor exosomes. These effects were blunted when MyD88(More)
Food-derived exosome-like nanoparticles pass through the intestinal tract throughout our lives, but little is known about their impact or function. Here, as a proof of concept, we show that the cells targeted by grape exosome-like nanoparticles (GELNs) are intestinal stem cells whose responses underlie the GELN-mediated intestinal tissue remodeling and(More)
The gut mucosal immune system is considered to play an important role in counteracting potential adverse effects of food-derived antigens including nanovesicles. Whether nanovesicles naturally released from edible fruit work in a coordinated manner with gut immune cells to maintain the gut in a noninflammatory status is not known. Here, as proof of concept,(More)
OBJECTIVE We sought to determine whether exosome-like vesicles (ELVs) released from adipose tissue play a role in activation of macrophages and subsequent development of insulin resistance in a mouse model. RESEARCH DESIGN AND METHODS ELVs released from adipose tissue were purified by sucrose gradient centrifugation and labeled with green fluorescent dye(More)
UNLABELLED The Wnt/β-catenin pathway has been known to play a role in induction of immune tolerance, but its role in the induction and maintenance of natural killer T (NKT) cell anergy is unknown. We found that activation of the Wnt pathways in the liver microenvironment is important for induction of NKT cell anergy. We identified a number of stimuli(More)