Learn More
We propose a new method to detect re-sampled imagery. The method is based on examining the normalized energy density present within windows of varying size in the second derivative of the frequency domain, and exploiting this characteristic to derive a 19-dimensional feature vector that is used to train a SVM classifier. Experimental results are reported on(More)
A new method to prepare the cross-linked enzyme aggregates (CLEAs) was developed. Through cross-linking the enzyme (Trypsin) aggregates, which was precipitated from the CO2-expanded reverse micellar solutions, dendritic CLEAs were obtained. The sizes of the CLEAs prepared by this new method were nanometer order of magnitudes and could be tuned by changing(More)
The effect of compressed CO2 on the specific activity of chloroperoxidase (CPO) to catalyze the chlorination of 1,3-dihydroxybenzene in cetyltrimethylammonium chloride (CTAC)/H2O/octane/pentanol reverse micellar solution was studied. The results show that the specific activity of the enzyme can be enhanced significantly by compressed CO2, and the specific(More)
In this work, we studied the effect of compressed CO2 on the stability of vesicles formed in a dodecyltrimethylammonium bromide (DTAB)/sodium dodecyl sulfate (SDS) mixed surfactant system by combination of phase behavior and turbidity study, and UV-vis and fluorescence techniques. It was discovered that compressed CO2 could enhance the stability of vesicles(More)
The effect of compressed CO2 on the solubilization of bovine serum albumin (BSA) in water/sodium bis-(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles was studied by observing phase behavior and recording UV-visible spectra under different conditions. The pH values within the water cores of reverse micelles at different CO2 pressures were also(More)
The effect of compressed CO2 on the critical micelle concentration (cmc) and aggregation number of sodium bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles in isooctane solution was studied by UV/Vis and fluorescence spectroscopy methods in the temperature range of 303.2-318.2 K and at different pressures or mole fractions of CO2 (X(CO2)). The capacity(More)