Learn More
Design variability due to die-to-die and within-die process variations has the potential to significantly reduce the maximum operating frequency and the effective yield of high-performance microprocessors in future process technology generations. One serious manifestation of this increased variability is a reduction in the mean frequency of fabricated chips(More)
Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D(More)
Process variation will greatly impact the power and performance of future microprocessors. Design approaches based on multiple supply or threshold voltage assignment provide techniques to statically tune critical path delays for energy savings [1]. However, under process variation, the delay of critical paths may vary, and a large number of critical paths(More)
Process variations are poised to significantly degrade performance benefits sought by moving to the next nanoscale technology node. Parameter fluctuations in devices can introduce large variations in peak operation among chips, among cores on a single chip, and among microarchitectural blocks within one core. Hence, it will be difficult to only rely on(More)
Design variability due to within-die and die-to-die process variations has the potential to significantly reduce the maximum operating frequency and the effective yield of high-performance microprocessors in future process technology generations. This variability manifests itself by increasing the number and criticality of long delay paths. To quantify this(More)
The need to perform power analysis in the early stages of the design process has become critical as power has become a major design constraint. Embedded and high-performance microprocessors incorporate large on-chip cache and similar SRAM-based or CAM-based structures, and these components can consume a significant fraction of the total chip power. Thus an(More)
The heavily-threaded data processing demands of streaming multiprocessors (SM) in a GPGPU require a large register file (RF). The fast increasing size of the RF makes the area cost and power consumption unaffordable for traditional SRAM designs in the future technologies. In this paper, we propose to use embedded-DRAM (eDRAM) as an alternative in future(More)
Process, Voltage, and Temperature (PVT) variations can significantly degrade the performance benefits expected from next nanoscale technology. The primary circuit implication of the PVT variations is the resultant timing emergencies. In a multi-core processor running multiple programs, variations create spatial and temporal unbalance across the processing(More)
The widening gap between the fast-increasing transistor budget but slow-growing power delivery and system cooling capability calls for novel architectural solutions to boost energy efficiency. Leveraging the fact of surging " dark silicon " area, we propose a hybrid scheme to use both on-chip and off-chip voltage regulators , called " AgileRegulator " , for(More)