Learn More
In this paper, we use resource-bounded dimension theory to investigate polynomial size circuits. We show that for every i ≥ 0, P/poly has ith order scaled p 3-strong dimension 0. We also show that P/poly i.o. has p 3-dimension 1/2, p 3-strong dimension 1. Our results improve previous measure results of Lutz (1992) and dimension results of Hitchcock and(More)
BACKGROUND Human bocavirus (HBoV) is a newly discovered parvovirus and increasing evidences are available to support its role as an etiologic agent in lower respiratory tract infection (LRTI). The objective of this study is to assess the impact of HBoV viral load on clinical characteristics in children who were HBoV positive and suffered severe LRTI. (More)
We use derandomization to show that sequences of positive pspace-dimension – in fact, even positive ∆ p k-dimension for suitable k – have, for many purposes, the full power of random oracles. For example, we show that, if S is any binary sequence whose ∆ p 3-dimension is positive, then BPP ⊆ P S and, moreover, every BPP promise problem is P S-separable. We(More)
The " analyst's traveling salesman theorem " of geometric measure theory characterizes those subsets of Euclidean space that are contained in curves of finite length. This result, proven for the plane by Jones (1990) and extended to higher-dimensional Euclidean spaces by Okikiolu (1991), says that a bounded set K is contained in some curve of finite length(More)
This paper presents the following results on sets that are complete for NP. (i) If there is a problem in NP that requires $2^{n^{\Omega(1)}}$ time at almost all lengths, then every many-one NP-complete set is complete under length-increasing reductions that are computed by polynomial-size circuits. (ii) If there is a problem in co-NP that cannot be solved(More)
The dimension of a point x in Euclidean space (meaning the constructive Hausdorff dimension of the singleton set {x}) is the algorithmic information density of x. Roughly speaking, this is the least real number dim(x) such that r × dim(x) bits suffice to specify x on a general-purpose computer with arbitrarily high precision 2 −r. The dimension spectrum of(More)
Resource-bounded measure is a generalization of classical Lebesgue measure that is useful in computational complexity. The central parameter of resource-bounded measure is the resource bound ∆, which is a class of functions. When ∆ is unrestricted, i.e., contains all functions with the specified domains and codomains, resource-bounded measure coincides with(More)