Learn More
BACKGROUND AND OBJECTIVE Alpha-fetoprotein (AFP) has been widely used as a diagnostic marker. AFP is also increased in patients at high risk for hepatocellular carcinoma (HCC), ie those with chronic hepatitis. The percentage of lens culinaris agglutinin-reactive alpha-fetoprotein (AFP-L3%) has long been proposed as a marker for HCC, but has not been widely(More)
Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key(More)
INTRODUCTION Previous studies demonstrated that MicroRNA-92a (miR-92a) was significantly differential expressed between colorectal cancer (CRC) patients and control cohorts, which provide timely relevant evidence for miR-92a as a novel promising biomarker in the colorectal cancer patients. This meta-analysis aimed to evaluate potential diagnostic value of(More)
In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa(1-x)N/GaN superlattice structure, by modulation doping of Mg in the AlxGa(1-x)N(More)
We reported that the peak efficiency together with the efficiency droop in InGaN-based light emitting diodes could be effectively modified through a simple and low-cost etch-regrown process in n-GaN layer. The etched n-GaN template contained pyramid arrays with inclined side planes. The following lateral overgrowth process from the etched n-GaN template(More)
Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial(More)
Polarization-reversed electron-blocking structure, which had negative polarization charges localized at the interface between the last quantum barrier (LQB) and electron-blocking layer (EBL), was demonstrated to remarkably improve the light-emitting efficiency of GaN-based blue light-emitting diodes (LEDs) numerically and experimentally. The improvement was(More)
The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that(More)
We report inducing an array of dumbbell-like air-voids inside the sapphire substrate in InGaN-based light-emitting diodes (LEDs) to improve the light extraction from LED device by a picosecond (Ps) pulse laser. At an injection current of 100 mA, the light output power (LOP) of packaged LEDs with laser-induced air-voids can be improved by 24.7% compared with(More)