Xiaoyan Y. Z. Xiong

Learn More
Reflection and transmission of electromagnetic waves at the boundaries of periodic composites (electromagnetic/optical metamaterials) depends in general on both bulk and surface waves. We investigate the interplay of these two contributions using three-dimensional full-wave numerical simulations and a recently developed non-asymptotic homogenization theory.
Volterra series is a powerful tool for blackbox macro-modeling of nonlinear devices. However, the exponential complexity growth in storing and evaluating higher order Volterra kernels has limited so far its employment on complex practical applications. On the other hand, tensors are a higher order generalization of matrices that can naturally and(More)
—Volterra series representation is a powerful mathematical model for nonlinear devices. However, the difficulties in determining higher-order Volterra kernels limited its broader applications. This paper proposed a systematic approach that enables a convenient extraction of Volterra kernels from X-parameters for the first time. Then the Vandermonde method(More)
Nanoantennas have demonstrated unprecedented capabilities for manipulating the intensity and direction of light emission over a broad frequency range. The directional beam steering offered by nanoantennas has important applications in areas including microscopy, spectroscopy, quantum computing, and on-chip optical communication. Although both the physical(More)
Plasmonic nanostructures that support surface plasmon (SP) resonance potentially provide a route for the development of nanoengineered nonlinear optical media. In this work, a novel plasmonic particle-in-cavity nanoantenna (PIC-NA) is proposed. The second harmonic generation (SHG) of the PIC-NA under strong localized SP resonance is systematically analyzed(More)
—To solve the low-frequency breakdown inherent from the electric field integral equation (EFIE), an alternative new form of the EFIE is proposed by using the Coulomb-gauge Green's function of quasi-static approximation. Different from the commonly adopted Lorentz-gauge EFIE, the Coulomb-gauge EFIE separates the solenoidal and irrotational surface currents(More)
The electromagnetic modeling of practical finite periodic structures is a topic of growing interest. Due to the truncation of the infinite periodic structures, surface waves will be excited and localized near the discontinuous interfaces leading to the edge effect of finite structures. In this work, surface waves are numerically disentangled from the(More)
We investigate the influence of the finite width of the metamaterial slabs. The surface waves excited in finite-width slabs are numerically extracted by the rigorous coupled-wave analysis method. The magnitudes and decay rates of surface waves are analyzed for different materials and geometries. A general homogenization method based on the analysis of(More)
  • 1