Learn More
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence(More)
Pathogen-associated molecular patterns (PAMPs) elicit basal defense responses in plants, and, in turn, pathogens have evolved mechanisms to overcome these PAMP-induced defenses. To suppress immunity, the phytopathogenic bacterium Pseudomonas syringae secretes effector proteins, the biochemical function and virulence targets of which remain largely unknown.(More)
The development of sensitive and versatile techniques to detect protein-protein interactions in vivo is important for understanding protein functions. The previously described techniques, fluorescence resonance energy transfer and bimolecular fluorescence complementation, which are used widely for protein-protein interaction studies in plants, require(More)
Resistance to bacterial speck disease in tomato occurs when the Pto kinase in the plant responds to expression of the avirulence gene avrPto in the Pseudomonas pathogen. Transient expression of an avrPto transgene in plant cells containing Pto elicited a defense response. In the yeast two-hybrid system, the Pto kinase physically interacted with AvrPto.(More)
Plants use receptor kinases, such as FLS2 and EFR, to perceive bacterial pathogens and initiate innate immunity. This immunity is often suppressed by bacterial effectors, allowing pathogen propagation. To counteract, plants have evolved disease resistance genes that detect the bacterial effectors and reinstate resistance. The Pseudomonas syringae effector(More)
Since 2007, many cases of fever, thrombocytopenia and leukopenia syndrome (FTLS) have emerged in Henan Province, China. Patient reports of tick bites suggested that infection could contribute to FTLS. Many tick-transmitted microbial pathogens were tested for by PCR/RT-PCR and/or indirect immunofluorescence assay (IFA). However, only 8% (24/285) of samples(More)
Arabidopsis NONHOST1 (NHO1) is required for limiting the in planta growth of nonhost Pseudomonas bacteria but completely ineffective against the virulent bacterium Pseudomonas syringae pv. tomato DC3000. However, the molecular basis underlying this observation remains unknown. Here we show that NHO1 is transcriptionally activated by flagellin. The nonhost(More)
Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances(More)
The successful recognition of pathogen-associated molecular patterns (PAMPs) as a danger signal is crucial for plants to fend off numerous potential pathogenic microbes. The signal is relayed through mitogen-activated protein kinase (MPK) cascades to activate defenses. Here, we show that the Pseudomonas syringae type III effector HopF2 can interact with(More)
The ability of Pseudomonas syringae pv. tomato DC3000 to be pathogenic on plants depends on the Hrp (hypersensitive response and pathogenicity) type III protein secretion system and the effector proteins it translocates into plant cells. Through iterative application of experimental and computational techniques, the DC3000 effector inventory has been(More)