Learn More
Neural activity in the gamma frequency range ("gamma") is elevated during active cognitive states. Gamma has been proposed to play an important role in cortical function, although this is debated. Understanding what function gamma might fulfill requires a better understanding of its properties and the mechanisms that generate it. Gamma is characterized by(More)
Gamma components of the local field potential (LFP) are elevated during cognitive and perceptual processes. It has been suggested that gamma power indicates the strength of neuronal population synchrony, which influences the relaying of signals between cortical areas. However, the relationship between coordinated spiking activity and gamma remains unclear,(More)
Neuronal responses are correlated on a range of timescales. Correlations can affect population coding and may play an important role in cortical function. Correlations are known to depend on stimulus drive, behavioral context, and experience, but the mechanisms that determine their properties are poorly understood. Here we make use of the laminar(More)
The gamma frequencies of the local field potential (LFP) provide a physiological correlate for numerous perceptual and cognitive phenomena and have been proposed to play a role in cortical function. Understanding the spatial extent of gamma and its relationship to spiking activity is critical for interpreting this signal and elucidating its function, but(More)
Brain rhythms are activity fluctuations shared in populations of neurons. They are evident in extracellular electric fields and detectable through recordings performed within the brain or on the scalp. The gamma rhythm, a relatively high frequency (30– 80 Hz) component of these fluctuations, has received a great deal of attention. Gamma is modulated by(More)
  • 1