Xiaotao Chen

Learn More
The generation of large numbers of functional human hepatocytes for cell-based approaches to liver disease is an important and unmet goal. Direct reprogramming of fibroblasts to hepatic lineages could offer a solution to this problem but so far has only been achieved with mouse cells. Here, we generated human induced hepatocytes (hiHeps) from fibroblasts by(More)
Understanding stage-dependent oncogenic mechanisms is critical to develop not only targeted therapies, but also diagnostic markers and preventive strategies. The mechanisms acting during cancer initiation remain elusive, largely owing to a lack of suitable animal models and limited availability of human precancerous lesions. Here we show using genetic mouse(More)
Power consumption is an important factor in chip design. The fundamental design decisions drawn during early design space exploration at electronic system level (ESL) have a large impact on the power consumption. This requires to estimate power already at ESL, which is usually not possible using standard ESL component libraries due to missing power models.(More)
UNLABELLED Hepatocytes possess a remarkable capacity to regenerate and reconstitute the parenchyma after liver damage. However, in the case of chronic injury, their proliferative potential is impaired and hepatic progenitor cells (HPCs) are activated, resulting in a ductular reaction known as oval cell response. Proapoptotic and survival signals maintain a(More)
CCAAT/enhancer binding protein alpha (C/EBPalpha) is a transcriptional regulatory factor that inhibits cell proliferation, and alternative translational initiation produces two polypeptides, C/EBPalphap30 and C/EBPalphap42. By expression profiling, it was revealed that C/EBPalphap30 specifically inhibited a unique set of genes, including MPP11, p84N5 and(More)
UNLABELLED Hepatocellular carcinoma (HCC) is a cancer lacking effective therapies. Several measures have been proposed to treat HCCs, such as senescence induction, mitotic inhibition, and cell death promotion. However, data from other cancers suggest that single use of these approaches may not be effective. Here, by genetic targeting of Survivin, an(More)
The evolution to Manycore platforms is real, both in the High-Performance Computing domain and in embedded systems. If we start with ten or more cores, we can see the evolution to many tens of cores and to platforms with 100 or more occurring in the next few years. These platforms are heterogeneous, homogeneous, or a mixture of subsystems of both types,(More)
We previously reported that inhibition of SVH-B, a specific splicing variant of SVH, results in apoptotic cell death. In this study, we reveal that this apoptosis may be dependent on the presence of p53. Co-immunoprecipitation and GST pull-down assays have demonstrated that SVH-B directly interacts with p53. In both BEL-7404 cells and p53-null Saos-2 cells(More)
Processor models for electronic system level (ESL) simulations are usually provided by their vendors as binary object code. Those binaries appear as black boxes, which do not allow to observe their internals. This prevents the application of most existing ESL power estimation methodologies. To remedy this situation, this work presents an estimation(More)
Complex many-core architectures are seen as the solution to tackle the computational workloads of the next years. To find the best trade-off between power and performance, different processor architectures have to be considered and evaluated in a thorough and power-aware design space exploration. This is highly facilitated by electronic system level (ESL)(More)