Learn More
Although vastly outnumbered, inhibitory interneurons critically pace and synchronize excitatory principal cell populations to coordinate cortical information processing. Precision in this control relies upon a remarkable diversity of interneurons primarily determined during embryogenesis by genetic restriction of neuronal potential at the progenitor stage.(More)
Neurogenesis is known to persist in the adult mammalian central nervous system (CNS). The identity of the cells that generate new neurons in the postnatal CNS has become a crucial but elusive issue. Using a transgenic mouse, we show that NG2 proteoglycan-positive progenitor cells that express the 2',3'-cyclic nucleotide 3'-phosphodiesterase gene display a(More)
We tested the hypothesis that the neurotransmitter glutamate would influence glial proliferation and differentiation in a cytoarchitecturally intact system. Postnatal day 6 cerebellar slices were maintained in organotypic culture and treated with glutamate receptor agonists or antagonists. After dissociation, cells were stained with antibodies for different(More)
We generated a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the control of the 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. EGFP(+) cells were visualized in live tissue throughout embryonic and postnatal development. Immunohistochemical analysis in brain tissue and in sciatic nerve demonstrated that EGFP(More)
Forebrain circuits rely upon a relatively small but remarkably diverse population of GABAergic interneurons to bind and entrain large principal cell assemblies for network synchronization and rhythmogenesis. Despite the high degree of heterogeneity across cortical interneurons, members of a given subtype typically exhibit homogeneous developmental origins,(More)
The G-protein coupled receptor (GPCR) metabotropic glutamate receptor 7 (mGluR7) is widely expressed throughout the nervous system and is implicated in diverse physiological processes ranging from synaptic plasticity to neuroprotection. To date, unequivocally assigning specific functions to mGluR7 has been hampered by a lack of specific pharmacological(More)
Neural cell development is regulated by membrane ion channel activity. We have previously demonstrated that cell membrane depolarization with veratridine or blockage of K+ channels with tetraethylammonium (TEA) inhibit oligodendrocyte progenitor (OP) proliferation and differentiation (); however the molecular events involved are largely unknown. Here we(More)
Besides the role of mature oligodendrocytes in myelin synthesis during the development of the central nervous system (CNS), the oligodendrocyte lineage also encompasses the largest pool of postnatal proliferating progenitors whose behavior in vivo remains broadly elusive in health and disease. We describe here transgenic models that allow us to track the(More)
Hippocampal N-methyl-D-aspartate (NMDA) receptor subunits, by virtue of their involvement in excitotoxic injury as well as memory association, may play an important role in the pathophysiologic mechanisms of traumatic brain injury (TBI). In this study, temporal changes in NMDA receptor subunit (NR1, NR2A, and NR2B) levels in rat hippocampus after TBI were(More)
Several groups have suggested that transplantation of marrow stromal cells (MSCs) promotes functional recovery in animal models of brain trauma. Recent studies indicate that tissue replacement by this method may not be the main source of therapeutic benefit, as transplanted MSCs have only limited ability to replace injured central nervous system (CNS)(More)