Xiaoqiang Su

  • Citations Per Year
Learn More
By combining the freedom of both the structural design and the orientation of split ring resonator antennas, we demonstrate terahertz metasurfaces that are capable of controlling both the phase and amplitude profiles over a very broad bandwidth. As an example, we show that the phase-amplitude metasurfaces can be engineered to control the diffraction orders(More)
The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a(More)
Metasurfaces provide great flexibility in tailoring light beams and reveal unprecedented prospects on novel functional components. However, techniques to dynamically control and manipulate the properties of metasurfaces are lagging behind. Here, for the first time to our knowledge, we present an active wave deflector made from a metasurface with phase(More)
A dielectric metamaterial approach for achieving spin-selective transmission of electromagnetic waves is proposed. The design is based on spin-controlled constructive or destructive interference between propagating phase and Pancharatnam-Berry phase. The dielectric metamaterial, consisting of monolithic silicon herringbone structures, exhibits a broadband(More)
Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching(More)
  • 1