Xiaoqian Yang

Learn More
Mutations in Presenilin-1 (PS1) are a major cause of familial Alzheimer's disease. Our previous studies showed that PS1 is required for murine neural development. Here we report that lack of PS1 leads to premature differentiation of neural progenitor cells, indicating a role for PS1 in a cell fate decision between postmitotic neurons and neural progenitor(More)
The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue(More)
Severe preeclampsia (PE) is a major cause of maternal mortality and morbidity worldwide. Signal transducer and activator of transcription 3 (Stat3) signal pathway can modulate various fundamental cellular processes. However, whether Stat3 plays a role in the pathogenesis of severe PE is unknown. Therefore, in this study, the expression levels of Stat3(More)
AIM To investigate the immunomodulating activity of astragalosides, the active compounds from a traditional tonic herb Astragalus membranaceus Bge, and to explore the molecular mechanisms underlying the actions, focusing on CD45 protein tyrosine phosphatase (CD45 PTPase), which plays a critical role in T lymphocyte activation. METHODS Primary splenocytes(More)
Approaches for the synthesis of biomaterials to facilitate the delivery of “biologics” is a major area of research in cancer therapy. Here we designed and characterized a hyaluronic acid (HA) based self-assembling nanoparticles that can target CD44 receptors overexpressed on multidrug resistance (MDR) ovarian cancer. The nanoparticle system is composed of(More)
Most cases of familial early-onset Alzheimer's disease are caused by mutations in the presenilin 1 (PS1) gene. However, the cellular functions of PS1 are unknown. We showed predominant localization of PS1 to cell-cell contacts of the plasma membrane in human prostate epithelial tissue and in a human epithelial cell line HEp2 stably transfected with an(More)
AIM To examine the therapeutic effects and underlying mechanisms of DZ2002, a reversible S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, on lupus-prone female NZB×NZW F1 (NZB/W F1) mice. METHODS Female NZB/W F1 mice were treated orally with DZ2002 (0.5 mg·kg(-1)·d(-1)) for 11 weeks, and the proteinuria level and body weight were monitored. After the(More)
BACKGROUND Artemisinin analogue SM934 was previously reported to possess immunosuppressive properties. The aim of this study was to determine the effects and the underlying mechanisms of SM934 in murine experimental autoimmune encephalomyelitis (EAE). METHODS Female C57BL/6 mice immunized with MOG35-55 were treated with or without SM934, then the clinical(More)
Our prior screening of microRNAs (miRs) identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a(More)
Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR,(More)