Learn More
Traditional Data Mining and Knowledge Discovery algorithms assume free access to data, either at a centralized location or in federated form. Increasingly, privacy and security concerns restrict this access, thus derailing data mining projects. What we need is distributed knowledge discovery that is sensitive to this problem. The key is to obtain valid(More)
Classical data mining algorithms implicitly assume complete access to all data, either in centralized or federated form. However, privacy and security concerns often prevent sharing of data, thus derailing data mining projects. Recently , there has been growing focus on finding solutions to this problem. Several algorithms have been proposed that do(More)
iDASH (integrating data for analysis, anonymization, and sharing) is the newest National Center for Biomedical Computing funded by the NIH. It focuses on algorithms and tools for sharing data in a privacy-preserving manner. Foundational privacy technology research performed within iDASH is coupled with innovative engineering for collaborative tool(More)
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through(More)
The adoption of smart meters may bring new privacy concerns to the general public. Given the fact that metering data of individual homes/factories is accumulated every 15 minutes, it is possible to infer the pattern of electricity consumption of individual users. In order to protect the privacy of users in a completely de-centralized setting (i.e.,(More)
OBJECTIVES We present SHARE, a new system for statistical health information release with differential privacy. We present two case studies that evaluate the software on real medical datasets and demonstrate the feasibility and utility of applying the differential privacy framework on biomedical data. MATERIALS AND METHODS SHARE releases statistical(More)
In real sequence labeling tasks, statistics of many higher order features are not sufficient due to the training data sparseness, very few of them are useful. We describe Sparse Higher Order Conditional Random Fields (SHO-CRFs), which are able to handle local features and sparse higher order features together using a novel tractable exact inference(More)
In many real-world applications of machine learning classifiers, it is essential to predict the probability of an example belonging to a particular class. This paper proposes a simple technique for predicting probabilities based on optimizing a ranking loss, followed by isotonic regression. This semi-parametric technique offers both good ranking and(More)
UNLABELLED WebGLORE is a free web service that enables privacy-preserving construction of a global logistic regression model from distributed datasets that are sensitive. It only transfers aggregated local statistics (from participants) through Hypertext Transfer Protocol Secure to a trusted server, where the global model is synthesized. WebGLORE seamlessly(More)