Learn More
CLIP-170 is implicated in the formation of kinetochore-microtubule attachments through direct interaction with the dynein/dynactin complex. However, whether this important function of CLIP-170 is regulated by phosphorylation is unknown. Herein, we have identified polo-like kinase 1 (Plk1) and casein kinase 2 (CK2) as two kinases of CLIP-170 and mapped S195(More)
Polo-like kinases and kinesin-like motor proteins are among the many proteins implicated in the execution of cytokinesis. Polo-like-kinase 1 (Plk1) interacts with the mitotic kinesin-like motor protein CHO1/MKLP-1 during anaphase and telophase, and CHO1/MKLP-1 is a Plk1 substrate in vitro. Here, we explore the molecular interactions of these two key(More)
Microenvironmental oxygen (O(2)) regulates stem cell activity, and a hypoxic niche with low oxygen levels has been reported in multiple stem cell types. Satellite cells are muscle-resident stem cells that maintain the homeostasis and mediate the regeneration of skeletal muscles. We demonstrate here that hypoxic culture conditions favor the quiescence of(More)
Polo-like kinase 1 (Plk1) plays essential roles at multiple events during cell division, yet little is known about its physiological substrates. In a cDNA phage display screen using Plk1 C-terminal affinity columns, we identified NudC (nuclear distribution gene C) as a Plk1 binding protein. Here, we characterize the interaction between Plk1 and NudC, show(More)
We previously reported the phenotype of depletion of polo-like kinase 1 (Plk1) using RNA interference (RNAi) and showed that p53 is stabilized in Plk1-depleted cancer cells. In this study, we further analyzed the Plk1 depletion-induced phenotype in both cancer cells and primary cells. The vector-based RNAi approach was used to evaluate the role of the p53(More)
The events of the cell cycle, the stages at which the cell proliferates and divides, are facilitated and controlled by multiple signaling pathways. Among the many regulatory enzymes that contribute to these processes is the polo-like kinase (Plk). Plks have been reported to mediate multiple mitotic processes, including bipolar spindle formation, activation(More)
In this communication, we examined the role of the MAP kinase pathway in the G2/M phase of the cell cycle. Activation of the Plk1 and MAP kinase pathways was initially evaluated in FT210 cells, which arrest at G2 phase at the restrictive temperature (39 degrees C), due to a mutation in the cdc2 gene. Previous studies had shown that these cells enter mitosis(More)
A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous(More)
Although the essential function of checkpoint kinase 1 (Chk1) in DNA damage response has been well established, the role of Chk1 in normal cell cycle progression is unclear. By using RNAi to specifically deplete Chk1, we determined loss-of-function phenotypes in HeLa cells. A vector-based RNAi approach showed that Chk1 is required for normal cell(More)
The mitotic kinesin-like protein (Mklp-1) localizes in the nucleus during interphase due to the presence of nuclear localization signal(s) [NLS(s)] within its sequence. Here, we mapped two NLSs to be 899SRKRRSST906 and 949KRKKP953 in the tail domain of Mklp-1, and showed that ectopic expression of a mutant Mklp-1 without the NLSs leads to cell cycle arrest(More)