Learn More
Chromosomal aberrations are a hallmark of acute lymphoblastic leukaemia (ALL) but alone fail to induce leukaemia. To identify cooperating oncogenic lesions, we performed a genome-wide analysis of leukaemic cells from 242 paediatric ALL patients using high-resolution, single-nucleotide polymorphism arrays and genomic DNA sequencing. Our analyses revealed(More)
The spread of H5N1 avian influenza viruses (AIVs) from China to Europe has raised global concern about their potential to infect humans and cause a pandemic. In spite of their substantial threat to human health, remarkably little AIV whole-genome information is available. We report here a preliminary analysis of the first large-scale sequencing of AIVs,(More)
Most children with acute lymphoblastic leukemia (ALL) can be cured, but the prognosis is dismal for the minority of patients who relapse after treatment. To explore the genetic basis of relapse, we performed genome-wide DNA copy number analyses on matched diagnosis and relapse samples from 61 pediatric patients with ALL. The diagnosis and relapse samples(More)
Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. So far, no molecularly targeted agents have been approved for treatment of the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive landscape of(More)
We present a simple numerical algorithm to select the minimal subset of SNPs required to capture the diversity of haplotype blocks or other genetic loci. This algorithm can be used to quickly select the minimum SNP subset with no loss of haplotype information. In addition, the method can be used in a more aggressive mode to further reduce the original SNP(More)
Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet(More)
UNLABELLED We developed a novel algorithm, PurityEst, to infer the tumor purity level from the allelic differential representation of heterozygous loci with somatic mutations in a human tumor sample with a matched normal tissue using next-generation sequencing data. We applied our tool to a whole cancer genome sequencing datasets and demonstrated the(More)
Accumulating evidence highlights the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. However, the role of lncRNA expression in human breast cancer biology, prognosis and molecular classification remains unknown. Herein, we established the lncRNA profile of 658 infiltrating ductal carcinomas of the(More)
SUMMARY We developed a new algorithmic method, VirusSeq, for detecting known viruses and their integration sites in the human genome using next-generation sequencing data. We evaluated VirusSeq on whole-transcriptome sequencing (RNA-Seq) data of 256 human cancer samples from The Cancer Genome Atlas. Using these data, we showed that VirusSeq accurately(More)
The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the(More)