Xiaopeng Zheng

Learn More
Here, we present a precision cancer nanomedicine based on Bi(2)S(3) nanorods (NRs) designed specifically for multispectral optoacoustic tomography (MSOT)/X-ray computed tomography (CT)-guided photothermal therapy (PTT). The as-prepared Bi(2)S(3) NRs possess ideal photothermal effect and contrast enhancement in MSOT/CT bimodal imaging. These features make(More)
We report here a simple, high-yield yet low-cost approach to design single-layer MoS2 nanosheets with controllable size via an improved oleum treatment exfoliation process. By decorating MoS2 nanosheets with chitosan, these functionalized MoS2 nanosheets have been developed as a chemotherapeutic drug nanocarrier for near-infrared (NIR)(More)
Engineering design of plasmonic nanomaterials as on-demand theranostic nanoagents with imaging, drug carrier, and photothermal therapy (PTT) functions have profound impact on treatment of cancer. Here, a facile 'one-pot' template-free hydrothermal route was firstly developed for synthesis of plasmonic oxygen deficiency molybdenum oxide hollow nanospheres(More)
The ability to selectively destroy cancer cells while sparing normal tissue is highly desirable during the cancer therapy. Here, magnetic targeted photothermal therapy was demonstrated by the integration of MoS2 (MS) flakes and Fe3O4 (IO) nanoparticles (NPs), where MoS2 converted near-infrared (NIR) light into heat and Fe3O4 NPs served as target moiety(More)
Light-triggered drug delivery based on near-infrared (NIR)-mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light-responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light-absorber, Rb(x) WO3 (rubidium(More)
Multi-drug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively investigated for overcoming MDR in cancer therapy because of its ability to inhibit P-glycoprotein (P-gp). In this work, TPGS was for the first time used as a new surface modifier to functionalize(More)
We have developed a simple and efficient strategy to fabricate WS2 nanosheets with low toxicity and good water solubility via a liquid exfoliation method by using H2SO4 intercalation and ultrasonication. The as-prepared WS2 nanosheets were employed not only as an NIR absorbing agent for photothermal therapy (PTT) but also as a photosensitizer (PS) carrier(More)
Hollow-structured nanomaterials with fluorescent properties are extremely attractive for image-guided cancer therapy. In this paper, sub-100 nm and hydrophilic NaYF4 upconversion (UC) hollow nanospheres (HNSs) with multicolor UC luminescence and drug-delivery properties were successfully prepared by a facile one-pot template-free hydrothermal route using(More)
We developed a facile strategy to obtain a new kind of mesoporous core-shell structured up-conversion nanoparticles (mUCNPs), composed of a NaYbF4:2%Er core and a mesoporous NaGdF4 shell. This mesoporous shell not only enhanced the up-conversion luminescence but also endowed many other functionalities of the nanoparticles such as drug delivery and(More)
Non-invasive and real-time imaging of the gastrointestinal (GI) tract is particularly desirable for research and clinical studies of patients with symptoms arising from gastrointestinal diseases. Here, we designed and fabricated silica-coated bismuth sulfide nanorods (Bi2S3@SiO2 NRs) for a non-invasive spatial-temporally imaging of the GI tract. The Bi2S3(More)