Xiaopeng Shen

Learn More
We theoretically demonstrated and experimentally verified high-order radial spoof localized surface plasmon resonances supported by textured metal particles. Through an effective medium theory and exact numerical simulations, we show the emergence of these geometrically-originated electromagnetic modes at microwave frequencies. The occurrence of high-order(More)
Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on(More)
We report the design, fabrication, and measurement of a microwave triple-band absorber. The compact single unit cell consists of three nested electric closed-ring resonators and a metallic ground plane separated by a dielectric layer. Simulation and experimental results show that the absorber has three distinctive absorption peaks at frequencies 4.06 GHz,(More)
It has been demonstrated that an ultrathin uniformly corrugated metallic strip is a good plasmonic waveguide in microwave and terahertz frequencies to propagate spoof surface plasmon polaritons (SPPs) with well confinement and small loss (Shen et al., PNAS 110, 40-45, 2013). Here, we propose a simple method to trap SPP waves on the ultrathin corrugated(More)
We present the occurrence of bright modes and dark modes in spoof localized surface plasmons (LSPs) generated by ultrathin corrugated metallic disks. As two such disks with asymmetric geometries are placed in close proximity, we find that dark modes (in multipoles) of one disk emerge by coupling with the bright modes (in dipoles) of the other disk. Then we(More)
In this paper, we present a novel broadband bandpass filter based on spoof surface plasmon polaritons (SSPPs) in the microwave frequency band. The proposed bandpass filter includes three parts: (1) coplanar waveguide (CPW); (2) matching transition; and (3) coupled structure that is an asymmetric coupled filter constructed by five grooved strips. The(More)
Developing nonprecious hydrogen evolution electrocatalysts that can work well at large current densities (e.g., at 1000 mA/cm2: a value that is relevant for practical, large-scale applications) is of great importance for realizing a viable water-splitting technology. Herein we present a combined theoretical and experimental study that leads to the(More)
Urban rail is widely considered to be a form of low-carbon green transportation, but there is a lack of specific quantitative research to support this. By comparing the mode, distance, and corresponding energy consumption of residents before and after the opening of rail transit, this paper establishes a carbon reduction method for rail transit. A(More)
By means of first-principles DFT computations, we systematically investigate the geometries, stabilities, electronic and magnetic properties of fully and partially hydrogenated zigzag BNC nanoribbons (fH-zBNCNRs and pH-zBNCNRs) with interfacial N-C or B-C connections. It is revealed that in the lowest-lying configuration of hybrid fH-zBNCNRs, the(More)