Learn More
The familial cylindromatosis tumor suppressor CYLD is known to contain three cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, which exist in a number of microtubule-binding proteins and are responsible for their association with microtubules. However, it remains elusive whether CYLD interacts with microtubules and, if so, whether the(More)
Deregulation of the mitotic spindle has been implicated in genomic instability, an important aspect of tumorigenesis and malignant transformation. To ensure the fidelity of chromosome transmission, the mitotic spindle is assembled by exquisite mechanisms and orchestrated by centrosomes in animal cells. Centrosomal proteins especially are thought to act(More)
Microtubule-binding proteins are a group of molecules that associate with microtubules, regulate the structural properties of microtubules, and thereby participate in diverse microtubule-mediated cellular activities. A recent mass spectrometry-based proteomic study has identified microtubule-associated protein 7 (MAP7) domain-containing 3 (Mdp3) as a(More)
The transactivator protein Tat of human immunodeficiency virus type 1 (HIV-1) is known to suppress microtubule dynamics and thereby trigger apoptosis in T lymphocytes. These actions of Tat constitute one of the major mechanisms for the massive destruction of T lymphocytes associated with the acquired immunodeficiency syndrome. Herein, we show that Tat(More)
Breast cancer is the most prevalent cancer in women worldwide with a high mortality rate, and the identification of new biomarkers and targets for this disease is greatly needed. Here we present evidence that microtubule-associated protein (MAP) 7 domain-containing protein 3 (Mdp3) is highly expressed in clinical samples and cell lines of breast cancer. The(More)
Centrosome aberrations have been implicated in the development and progression of breast cancer. Our previous worked show that centrosomal protein 70 (Cep70) regulates breast cancer growth and metastasis. However, it remains elusive whether Cep70 is implicated in the sensitivity of the anti-microtubule drug paclitaxel in breast cancer. Here we provide(More)
Microtubule-mediated cellular events such as intracellular transport and the maintenance of cell polarity are highly dependent upon microtubule stability, which is controlled by a repertoire of microtubule-associated proteins (MAPs) in the cell. MAP7 domain-containing protein 3 (Mdp3) has recently been identified as a critical regulator of microtubule(More)
The familial cylindromatosis tumour suppressor CYLD contains three cytoskeleton-associated protein glycine-rich (CAP-Gly) domains and a deubiquitinase domain. The tumour-suppressing function of CYLD has been attributed to its deubiquitinase domain, which removes lysine-63-linked polyubiquitin chains from target proteins, leading to the inhibition of cell(More)
Reversible acetylation of Tat is critical for its transactivation activity toward HIV-1 transcription. However, the enzymes involved in the acetylation/deacetylation cycles have not been fully characterized. In this study, by yeast two-hybrid assay, we have discovered the histone deacetylase HDAC6 to be a binding partner of Tat. Our data show that HDAC6(More)
A series of novel chalcone-rivastigmine hybrids were designed, synthesized, and tested in vitro for their ability to inhibit human acetylcholinesterase and butyrylcholinesterase. Most of the target compounds showed hBChE selective activity in the micro- and submicromolar ranges. The most potent compound 3 exhibited comparable IC50 to the commercially(More)