Learn More
Equal chromosome segregation requires proper assembly of many proteins, including Bub3, onto kinetochores to promote kinetochore-microtubule interactions. By screening for mitotic regulators in the spindle envelope and matrix (Spemix), we identify a conserved Bub3 interacting and GLE-2-binding sequence (GLEBS) containing ZNF207 (BuGZ) that associates with(More)
Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in(More)
Actin is the most abundant protein in eukaryotic cells and is a key cytoskeletal component controlling cell morphology and motility. In this study, four MiACT genes were isolated from mango by homological cloning and designated as MiACT1, MiACT4, MiACT7, and MiACT9. Sequence alignments and phylogenetic analysis demonstrated that the four MiACT genes of(More)
Although studies suggest that perturbing mitotic progression leads to DNA damage and p53 activation, which in turn lead to either cell apoptosis or senescence, it remains unclear how mitotic defects trigger p53 activation. We show that BuGZ and Bub3, which are two mitotic regulators localized in the interphase nucleus, interact with the splicing machinery(More)
RanGTP is known to regulate the spindle assembly checkpoint (SAC), but the underlying molecular mechanism is unclear. BuGZ stabilizes SAC protein Bub3 through direct interaction and facilitates its mitotic function. Here we show that RanGTP promotes the turnover of BuGZ and Bub3 in metaphase, which in turn facilitates metaphase-to-anaphase transition. BuGZ(More)
  • 1