Learn More
Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities. Many fundamental studies and technological applications of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of(More)
Single-walled carbon nanotubes (SWNTs) have unique photophysical properties but low fluorescence efficiency. We have found significant increases in the fluorescence efficiency of individual DNA-wrapped SWNTs upon addition of reducing agents, including dithiothreitol, Trolox, and β-mercaptoethanol. Brightening was reversible upon removal of the reducing(More)
Single-wall carbon nanotubes provide ideal model one-dimensional (1-D) condensed matter systems in which to address fundamental questions in many-body physics, while, at the same time, they are leading candidates for building blocks in nanoscale optoelectronic circuits. Much attention has been recently paid to their optical properties, arising from 1-D(More)
Raman spectroscopy on the radial breathing mode is a common tool to determine the diameter d or chiral indices (n,m) of single-wall carbon nanotubes. In this work we present an alternative technique to determine d and (n,m) based on the high-energy G(-) mode. From resonant Raman scattering experiments on 14 highly purified single chirality (n,m) samples we(More)
Single-walled carbon nanotubes (SWNTs) are potential materials for future nanoelectronics. Since the electronic and optical properties of SWNTs strongly depend on tube diameter and chirality, obtaining SWNTs with narrow (n,m) chirality distribution by selective growth or chemical separation has been an active area of research. Here, we demonstrate that a(More)
The ability to sort mixtures of carbon nanotubes (CNTs) based on chirality has recently been demonstrated using special short DNA sequences that recognize certain matching CNTs of specific chirality. In this work, we report on a study of the relationship between recognition sequences and the strength of their binding to the recognized CNT. We have chosen(More)
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting(More)
Chirality-controlled synthesis of single-wall carbon nanotubes with predefined chiralities has been an important but elusive goal for almost two decades. Here we demonstrate a general strategy for producing carbon nanotubes with predefined chiralities by using purified single-chirality nanotubes as seeds for subsequent metal catalyst free growth, resembling(More)
Upon absorption of single photons, multiple excitons were generated and detected in semiconducting single-walled carbon nanotubes (SWNTs) using transient absorption spectroscopy. For (6,5) SWNTs, absorption of single photons with energies corresponding to three times the SWNT energy gap results in an exciton generation efficiency of 130% per photon. Our(More)
The armchair carbon nanotube is an ideal system to study fundamental physics in one-dimensional metals and potentially a superb material for applications such as electrical power transmission. Synthesis and purification efforts to date have failed to produce a homogeneous population of such a material. Here we report evolutionary strategies to find DNA(More)