Learn More
Parkinson's disease (PD) is the most common neurodegenerative movement disorder afflicting >500,000 patients in the United States alone. This age-related progressive disorder is typified by invariant loss of dopaminergic substantia nigra neurons (DAN), dystrophic neurites, the presence of alpha-synuclein (SYN) positive intracytoplasmic inclusions (Lewy(More)
Microglia provide immune surveillance for the brain through both the removal of cellular debris and protection against infection by microorganisms and "foreign" molecules. Upon activation, microglia display an altered morphology and increased expression of proinflammatory molecules. Increased numbers of activated microglia have been identified in a number(More)
In Parkinson's disease (PD) chronic inflammation occurs in the substantia nigra (SNc) concurrently with dopaminergic neurodegeneration. In models of PD, microglial activation precedes neurodegeneration in the SNc, suggesting that the underlying pathogenesis involves a complex response in the nigrostriatal pathway, and that the innate immune system plays a(More)
Clinical studies to date have failed to establish therapeutic benefit of glial cell-derived neurotrophic factor (GDNF) in Parkinson's disease (PD). In contrast to previous nonclinical neuroprotective reports, this study shows clinically relevant and long-lasting regeneration of the dopaminergic system in rhesus macaques lesioned with(More)
The etiology of Parkinson's disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Recent studies establish that central and peripheral inflammation occurs in the prodromal stage of the disease and sustains disease progression. Aging, heritable risk factors, or environmental exposures may contribute to the(More)
We evaluated neuropathological findings in two studies of AAV2-GDNF efficacy and safety in naive aged (>20 years) or MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned rhesus macaques. In the first study, a total of 17 animals received one of two doses of AAV2-GDNF into either putamen or substantia nigra (SN). To control for surgical variables,(More)
Gene therapies that utilize convention-enhanced delivery (CED) will require close monitoring of vector infusion in real time and accurate prediction of drug distribution. The magnetic resonance imaging (MRI) contrast agent, Gadoteridol (Gd), was used to monitor CED infusion and to predict the expression pattern of glial cell line-derived neurotrophic factor(More)
BACKGROUND Putaminal convection-enhanced delivery (CED) of an adeno-associated virus serotype 2 (AAV2) vector, containing the human aromatic L-amino acid decarboxylase (hAADC) gene for the treatment of Parkinson disease (PD), has completed a phase I clinical trial. OBJECTIVE To retrospectively analyze magnetic resonance imaging (MRI) and positron emission(More)
Accumulation of misfolded proteins has been implicated in a variety of neurodegenerative diseases including prion diseases, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In the past decade, single-chain fragment variable (scFv) -based immunotherapies have been developed to target abnormal proteins or various forms of(More)
BACKGROUND Real-time convection-enhanced delivery (RCD) of adeno-associated viral vectors by co-infusion of gadoteridol allows T1 magnetic resonance imaging (T1 MRI) prediction of areas of subsequent gene expression. The use of T2 MRI in RCD is less developed. In addition, the effect of flushing a dead-space volume on subsequent distribution of a(More)