Learn More
Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways,(More)
Balanced utilization of metabolic intermediates and controllable expression of genes in biosynthetic pathways are key issues for the effective production of value-added chemicals in microbes. An inducer/repressor-free sequential control strategy regulated by glucose concentration in the growth environment was proposed to address these issues, and its(More)
Saccharomyces cerevisiae is an important platform organism for the synthesis of a great number of natural products. However, the assembly of controllable and genetically stable heterogeneous biosynthetic pathways in S. cerevisiae still remains a significant challenge. Here, we present a strategy for reconstructing controllable multi-gene pathways by(More)
In this report, UbiE and UbiH in the quinone modification pathway (QMP) were identified in addition to UbiG as bottleneck enzymes in the CoQ10 biosynthesis by Rhodobacter sphaeroides. The CoQ10 content was enhanced after co-overexpression of UbiE and UbiG, however, accompanied by the accumulation of the intermediate 10P-MMBQ. UbiH was then co-overexpressed(More)
We constructed a biosynthetic pathway of isoprene production in Escherichia coli by introducing isoprene synthase (ispS) from Populus alba. 1-deoxy-d-xylulose 5-phosphate synthase (dxs), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (dxr) and isopentenyl diphosphate (IPP) isomerase (idi) were overexpressed to enhance the isoprene production. The isoprene(More)
Methyl (R)-o-chloromandelate (R-CMM) is an intermediate for the platelet aggregation inhibitor clopidogrel. Its preparation through enzymatic resolution of the corresponding ester has been hindered by the lack of an enzyme with satisfying enantioselectivity and activity. In the present work, we aimed to improve the enzymatic enantioselectivity towards(More)
A novel high-throughput screening method is proposed for the directed evolution of exoglucanase facilitated by the co-expression of β-glucosidase, using the glucose released from filter paper as the screening indicator. Three transformants (B1, D6 and G10) with improved activity were selected from 4,000 colonies. The specific activities of B1, D6 and G10(More)
To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch(More)
Isoprene is facing a growing global market due to its wide industrial applications. Current industrial production of isoprene is almost entirely petroleum-based, which is influenced by the shrinking C5 supply, while the natural emission of isoprene is predominantly contributed by plants. To bridge the need gap, a highly efficient fermentation-based process(More)
Microbial production of isoprene from renewable feedstock is a promising alternative to traditional petroleum-based processes. Currently, efforts to improve isoprenoid production in Saccharomyces cerevisiae mainly focus on cytoplasmic engineering, whereas comprehensive engineering of multiple subcellular compartments is rarely reported. Here, we propose(More)