Learn More
Genome shuffling is an efficient approach for the rapid improvement of the yield of secondary metabolites. This study was undertaken to enhance the yield of surfactin produced by Bacillus amyloliquefaciens ES-2-4 using genome shuffling and to examine changes in SrfA expression of the improved phenotype at the transcriptional level. Six strains with subtle(More)
In this study, the lipoxygenase (ana-LOX) gene from Anabaena sp. PCC 7120 was successful expressed and secreted in Bacillus subtilis. Under the control of the P43 promoter, with a signal peptide from the B. subtilis 168 nprB gene, and facilitated by the molecular chaperone PrsA, the production of the recombinant ana-LOX (ana-rLOX) reached 76 U/mL (171.9(More)
Paenibacillus polymyxa JSa-9 had been found to produce five cyclic LI-F type antibiotics which were released into culture medium in accordance with our previous report. In this study, another three kinds of antagonistic compounds were extracted from P. polymyxa JSa-9 cell pellets and (or) spores by methanol. Using high performance liquid chromatography(More)
Acetaldehyde is a known mutagen and carcinogen. Active aldehyde dehydrogenase (ALDH) represents an important mechanism for acetaldehyde detoxification. A yeast strain XJ-2 isolated from grape samples was found to produce acetaldehyde dehydrogenase with a high activity of 2.28 U/mg and identified as Issatchenkia terricola. The enzyme activity was validated(More)
Previous studies have shown the tumor-suppressive role of selenium-binding protein 1 (SBP1), but the underlying mechanisms are unclear. In this study, we found that induction of SBP1 showed significant inhibition of colorectal cancer cell growth and metastasis in mice. We further employed isobaric tags for relative and absolute quantitation (iTRAQ) to(More)
The lipopeptide antibiotic fengycin, produced by Bacillus subtilis, strongly inhibits growth of filamentous fungi. In this study, we evaluated the effects of fengycin treatment on apoptosis and necrosis in Rhizopus stolonifer by means of cell staining and epifluorescence microscopy. At fengycin concentrations less than 50 μg/ml, treated fungal cells(More)
Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully knocked-out using a temperature-sensitive plasmid,(More)
Both donors and acceptors of communication-mediating (COM) domains are essential for coordinating intermolecular communication within nonribosomal peptides synthetases (NRPSs) complexes. Different sets of COM domains provide selectivity, allowing NRPSs to utilize different natural biosynthetic templates. In this study, novel lipopeptides were synthesized by(More)
Non-ribosomal peptide synthetases (NRPSs) are large enzymatic complexes that catalyse the synthesis of biologically active peptides in microorganisms. Genetic engineering has recently been applied to reprogram NRPSs to produce lipopeptides with a new sequence. The carboxyl-terminal thioesterase (TE) domains from NRPSs catalyse cleavage products by(More)
A novel real-time PCR (qPCR) assay with internal amplification control based on the rpoB gene was developed for the detection and quantification of Cronobacter spp. Inclusivity and exclusivity of the qPCR assay were tested on a strain collection containing 19 Cronobacter and 26 non-Cronobacter strains. All Cronobacter strains were successfully identified,(More)