Learn More
The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the(More)
DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter(More)
Preserving edge structures is a challenge to image interpolation algorithms that reconstruct a high-resolution image from a low-resolution counterpart. We propose a new edge-guided nonlinear interpolation technique through directional filtering and data fusion. For a pixel to be interpolated, two observation sets are defined in two orthogonal directions,(More)
c ⃝2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of(More)
We present a novel 2-D wavelet transform scheme of adaptive directional lifting (ADL) in image coding. Instead of alternately applying horizontal and vertical lifting, as in present practice, ADL performs lifting-based prediction in local windows in the direction of high pixel correlation. Hence, it adapts far better to the image orientation features in(More)
Context modeling is an extensively studied paradigm for lossless compression of continuous-tone images. However, without careful algorithm design, high-order Markovian modeling of continuous-tone images is too expensive in both computational time and space to be practical. Furthermore, the exponential growth of the number of modeling states in the order of(More)
As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of the l(1)-norm optimization techniques and the fact that natural images are intrinsically sparse in some domains. The image restoration quality largely(More)
Digital cameras sample scenes using a color filter array of mosaic pattern (e.g., the Bayer pattern). The demosaicking of the color samples is critical to the image quality. This paper presents a new color demosaicking technique of optimal directional filtering of the green-red and green-blue difference signals. Under the assumption that the primary(More)