Xiaolin Deng

Learn More
Methamphetamine (METH) is a drug of abuse that has long been known to damage monoaminergic systems in the mammalian brain. Recent reports have provided conclusive evidence that METH can cause neuropathological changes in the rodent brain via apoptotic mechanisms akin to those reported in various models of neuronal death. The purpose of this review is to(More)
Methamphetamine (METH) is an illicit drug that causes neurodegenerative effects in humans. In rodents, METH induces apoptosis of striatal glutamic acid decarboxylase (GAD) -containing neurons. This paper provides evidence that METH-induced cell death occurs consequent to interactions of ER stress and mitochondrial death pathways. Specifically, injections of(More)
Methamphetamine [METH ("speed")] is an abused psychostimulant that can cause psychotic, cognitive, and psychomotor impairment in humans. These signs and symptoms are thought to be related to dysfunctions in basal ganglionic structures of the brain. To identify possible molecular bases for these clinical manifestations, we first used cDNA microarray(More)
Free radicals are involved in neurodegenerative disorders, such as ischemia and aging. We have previously demonstrated that treatment with diets enriched with blueberry, spinach, or spirulina have been shown to reduce neurodegenerative changes in aged animals. The purpose of this study was to determine if these diets have neuroprotective effects in focal(More)
Methamphetamine is a neurotoxic drug of abuse known to cause cell death both in vitro and in vivo. Nevertheless, the molecular and cellular mechanisms involved in this process remain to be clarified. Herein, we show that methamphetamine-induced apoptosis is associated with early (2 h) overexpression of bax, decreases of mitochondrial membrane potential and(More)
BACKGROUND Methamphetamine (METH) is an addictive drug that can cause neurological and psychiatric disorders. In the rodent brain, toxic doses of METH cause damage of dopaminergic terminals and apoptosis of nondopaminergic neurons. The olfactory bulb (OB) is a brain region that is rich with dopaminergic neurons and terminals. METHODS Rats were given a(More)
The abuse of the illicit drug methamphetamine (METH) is a major concern because it can cause terminal degeneration and neuronal cell death in the brain. METH-induced cell death occurs via processes that resemble apoptosis. In the present review, we discuss the role of various apoptotic events in the causation of METH-induced neuronal apoptosisin vitro andin(More)
The regional distribution of c-Jun expression and of the number of apoptotic cells was compared in various brain areas after methamphetamine administration to mice. Our results showed that there was methamphetamine-induced overexpression of c-Jun in the cortex and striatum but not in the cerebellar cortex. There was an almost totally similar regional(More)
Methamphetamine (METH) is an illicit drug that causes neuronal apoptosis in the mouse striatum, in a manner similar to the neuronal loss observed in neurodegenerative diseases. In the present study, injections of METH to mice were found to cause the death of enkephalin-positive projection neurons but not the death of neuropeptide Y (NPY)/nitric oxide(More)
The neuroprotective effects of Delta(9)-tetrahydrocannabinol (THC) were examined using an in vitro model in which the AF5 CNS cell line was exposed to toxic levels of N-methyl-d-aspartate (NMDA), an agonist of the NMDA glutamate receptor. NMDA toxicity was reduced by THC, but not by the more specific cannabinoid receptor agonist, WIN55,212-2. Addition of(More)