Xiaoliang Lu

Learn More
Time-series terrestrial parameters derived from NOAA/AVHRR, SPOT/VEGETATION, TERRA, or AQUA/MODIS data, such as Normalized Difference Vegetation Index (NDVI), Leaf Index Area (LAI), and Albedo, have been extensively applied to global climate change. However, the noise impedes these data from being further analyzed and used. In this paper, a wavelet-based(More)
The Midwest of the United States includes 12 states and accounts for about a quarter of the total United State land area. In recent years, there is an increasing interest in knowing the biomass potential and carbon balance over this region for the past and the future. In this study, we use the Terrestrial Ecosystem Model (TEM) to evaluate these quantities(More)
Development of regional policies to reduce net emissions of carbon dioxide (CO2) would benefit from the quantification of the major components of the region's carbon balance--fossil fuel CO2 emissions and net fluxes between land ecosystems and the atmosphere. Through spatially detailed inventories of fossil fuel CO2 emissions and a terrestrial(More)
Simulation result for protein folding/unfolding is highly dependent on the accuracy of the force field employed. Even for the simplest structure of protein such as a short helix, simulations using the existing force fields often fail to produce the correct structural/thermodynamic properties of the protein. Recent research indicated that lack of(More)
[1] Much progress has been made in methane modeling for the Arctic. However, there is still large uncertainty in emissions estimates due to the spatial variability in water table depth resulting from complex topographic gradients, and due to variations in methane production and oxidation due to complex freezing and thawing processes. Here we extended an(More)
a r t i c l e i n f o In this study, we used the remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS), meteorological and eddy flux data and an artificial neural networks (ANNs) technique to develop a daily evapotranspiration (ET) product for the period of 2004–2005 for the conterminous U.S. We then estimated and analyzed the(More)
Background: Recently, several papers have assessed land use consequences of biofuel expansion. In the absence of empirical evidence, these papers assigned subjective values to extensive margin (productivity of new croplands over productivity of existing croplands). Methods: This paper fills the gap in this area and provides a new data set which estimates(More)
Under Grid environments, how to access a set of heterogeneous data resource in a uniformed way is a well studied subject. The two most important problems about it are: 1. how to hide the different access manners of different data resources and 2. how to map real data to virtual data which can be used by various applications. In this paper, the Data Grid(More)
The effect of surface water movement onmethane emissions is not explicitly considered in most of the current methane models. In this study, a surface water routing was coupled into our previously developed large-scale methane model. The revised methane model was then used to simulate global methane emissions during 2006–2010. From our simulations, the(More)
Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg(More)