Learn More
Revealing neural circuit mechanisms is critical for understanding brain functions. Significant progress in dissecting neural connections has been made using optical imaging with fluorescence labels, especially in dissecting local connections. However, acquiring and tracing brain-wide, long-distance neural circuits at the neurite level remains a substantial(More)
Our previous research indicates that the extracellular signal-regulated kinase (ERK)-cyclic AMP-responsive-element-binding protein (CREB) signal system may be involved in the molecular mechanism of depression. The present study further investigated the effect of antidepressant fluoxetine on the ERK-CREB signal system and the depressive-like behaviors in(More)
In the present study, 40 Sprague-Dawley rats were divided into forced swim stress group and controls, with 20 rats in each group (10 for behavioral tests, 10 for protein detection). The forced swim stress group received swim stress for 14 consecutive days, and the controls were stress-free. After stress, 20 rats were tested for behavioral observation using(More)
The anticonvulsant drug lamotrigine has been shown to produce antidepressant effects in patients with bipolar disorder. To date, only a few preclinical studies have been conducted using lamotrigine treatment in the forced swim test (FST), an animal model of depression with low face validity. The underlying mechanisms by which lamotrigine works have not been(More)
The anticonvulsant drug lamotrigine has been shown to produce strong antidepressant effects in the treatment of patients with bipolar disorder. However, to date there are few preclinical reports on its behavioral actions in animal models of depression or its underlying molecular mechanisms. The current study investigated the effects of lamotrigine in the(More)
Neural circuits are fundamental for brain functions. However, obtaining long range continuous projections of neurons in the entire brain is still challenging. Here a two-photon fluorescence micro-optical sectioning tomography (2p-fMOST) method is developed for high-throughput, high-resolution visualization of the brain circuits. Two-photon imaging(More)
Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability. Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications.(More)
Our recent research demonstrates that the extracellular signal-regulated kinase (ERK) signal pathway is impaired in depressed animals, and such disruption is effectively reversed following antidepressant treatment. These results indicate that the ERK pathway may participate in the molecular mechanism of depression. To provide direct evidence for the(More)
A recently reported micro-optical sectioning tomography system has great potential to draw the neuronal circuits of large brain volume with submicron resolution by combining fine mechanic sectioning with simultaneous optical imaging. However, sectioning the fluorescence sample sometimes induces tears between adjacent tiles and causes difficulties in(More)
Fluorescent labeling has opened up the possibility of clarifying the complex distribution and circuit wiring of specific neural circuits for particular functions. To acquire the brain-wide fluorescently labeled neural wiring, we have previously developed the fluorescence micro-optical sectioning tomography imaging system. This employs simultaneous(More)