Learn More
High data rates give rise to frequency-selective propagation, whereas carrier frequency-offsets and mobility-induced Doppler shifts introduce time-selectivity in wireless links. To mitigate the resulting timeand frequency-selective (or doubly selective) channels, optimal training sequences have been designed only for special cases: pilot symbol assisted(More)
This letter proposes a novel decoding scheme for Alamouti’s space–time (ST) coded transmissions over time-selective fading channels that arise due to Doppler shifts and carrier frequency offsets. Modeling the time-selective channels as random processes, we employ Kalman filtering for channel tracking in order to enable ST decoding with diversity gains.(More)
High data rates and multipath propagation give rise to frequency-selectivity of wireless channels, while carrier frequency offsets and mobility-induced Doppler shifts introduce time-selectivity in wireless links. The resulting time- and frequency-selective (or doubly selective) channels offer joint multipath-Doppler diversity gains. Relying on a basis(More)
The ability of orthogonal frequency-division multiplexing systems to mitigate frequency-selective channels is impaired by the presence of carrier frequency offsets (CFOs). In this paper, we investigate identifiability issues involving high-resolution techniques that have been proposed for blind CFO estimation based on null subcarriers. We propose new(More)
We compare two block transmission systems over frequency-selective fading channels: orthogonal frequency-division multiplexing (OFDM) versus single-carrier modulated blocks with zero padding (ZP). We first compare their peak-to-average power ratio (PAR) and the corresponding power amplifier backoff for phase-shift keying or quadrature amplitude modulation.(More)
Exciting recent developments in wireless multiantenna communications have led to designs aiming mainly at one of two objectives: either high-performance by enabling the diversity provided by multi-input multi-output (MIMO) channels or high-rates by capitalizing on space-time multiplexing gains to realize the high capacity of MIMO fading channels. By(More)
High data rates give rise to frequency-selective propagation, while carrier frequency-offsets and mobility-induced Doppler shifts introduce time-selectivity in wireless links. To mitigate the resulting time- and frequency-selective (or doubly-selective) channels, an optimal training strategy is designed in this paper for block transmissions over(More)
In MIMO systems, Maximum Likelihood (ML) detectors become complex and hence infeasible when the constellation size and the number of transmit-antennas are large. Whereas linear equalizers are relatively simpler and less complex but their performance is poor. The project deals with improvement of performance of linear equalizers using lattice-reduction(More)
Linear equalizers (LEs) have been widely adopted for practical systems due to their low computational complexity. However, it is also well known that LEs provide inferior performance relative to a maximum-likelihood equalizer (MLE) or other near-MLEs, because LEs usually cannot collect the diversity order enabled by the transmitter and at the same time they(More)